# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import torch import nvdiffrast.torch as dr from . import util from . import renderutils as ru from . import light # ============================================================================================== # Helper functions # ============================================================================================== def interpolate(attr, rast, attr_idx, rast_db=None): return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') # ============================================================================================== # pixel shader # ============================================================================================== def shade( gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_tex_pos, gb_texc, gb_texc_deriv, w2c, view_pos, lgt, material, bsdf, feat, two_sided_shading, delta_xy_interp=None, dino_pred=None, class_vector=None, im_features_map=None, mvp=None ): ################################################################################ # Texture lookups ################################################################################ perturbed_nrm = None # Combined texture, used for MLPs because lookups are expensive # all_tex_jitter = material.sample(gb_tex_pos + torch.normal(mean=0, std=0.01, size=gb_tex_pos.shape, device="cuda"), feat=feat) if material is not None: if im_features_map is None: all_tex = material.sample(gb_tex_pos, feat=feat) else: all_tex = material.sample(gb_tex_pos, feat=feat, feat_map=im_features_map, mvp=mvp, w2c=w2c, deform_xyz=gb_pos) else: all_tex = torch.ones(*gb_pos.shape[:-1], 9, device=gb_pos.device) kd, ks, perturbed_nrm = all_tex[..., :3], all_tex[..., 3:6], all_tex[..., 6:9] # Compute albedo (kd) gradient, used for material regularizer # kd_grad = torch.sum(torch.abs(all_tex_jitter[..., :-6] - all_tex[..., :-6]), dim=-1, keepdim=True) / if dino_pred is not None and class_vector is None: # DOR: predive the dino value using x,y,z, we would concatenate the label vector. # trained together, generated image as the supervision for the one-hot-vector. dino_feat_im_pred = dino_pred.sample(gb_tex_pos) # dino_feat_im_pred = dino_pred.sample(gb_tex_pos.detach()) if dino_pred is not None and class_vector is not None: dino_feat_im_pred = dino_pred.sample(gb_tex_pos, feat=class_vector) # else: # kd_jitter = material['kd'].sample(gb_texc + torch.normal(mean=0, std=0.005, size=gb_texc.shape, device="cuda"), gb_texc_deriv) # kd = material['kd'].sample(gb_texc, gb_texc_deriv) # ks = material['ks'].sample(gb_texc, gb_texc_deriv)[..., 0:3] # skip alpha # if 'normal' in material: # perturbed_nrm = material['normal'].sample(gb_texc, gb_texc_deriv) # kd_grad = torch.sum(torch.abs(kd_jitter[..., 0:3] - kd[..., 0:3]), dim=-1, keepdim=True) / 3 # Separate kd into alpha and color, default alpha = 1 # alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1]) # kd = kd[..., 0:3] alpha = torch.ones_like(kd[..., 0:1]) ################################################################################ # Normal perturbation & normal bend ################################################################################ if material is None or not material.perturb_normal: perturbed_nrm = None gb_normal = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=two_sided_shading, opengl=True, use_python=True) # if two_sided_shading: # view_vec = util.safe_normalize(view_pos - gb_pos, -1) # gb_normal = torch.where(torch.sum(gb_geometric_normal * view_vec, -1, keepdim=True) > 0, gb_geometric_normal, -gb_geometric_normal) # else: # gb_normal = gb_geometric_normal b, h, w, _ = gb_normal.shape cam_normal = util.safe_normalize(torch.matmul(gb_normal.view(b, -1, 3), w2c[:,:3,:3].transpose(2,1))).view(b, h, w, 3) ################################################################################ # Evaluate BSDF ################################################################################ assert bsdf is not None or material.bsdf is not None, "Material must specify a BSDF type" bsdf = bsdf if bsdf is not None else material.bsdf shading = None if bsdf == 'pbr': if isinstance(lgt, light.EnvironmentLight): shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=True) else: assert False, "Invalid light type" elif bsdf == 'diffuse': if lgt is None: shaded_col = kd elif isinstance(lgt, light.EnvironmentLight): shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=False) # elif isinstance(lgt, light.DirectionalLight): # shaded_col, shading = lgt.shade(feat, kd, cam_normal) # else: # assert False, "Invalid light type" else: shaded_col, shading = lgt.shade(feat, kd, cam_normal) elif bsdf == 'normal': shaded_col = (gb_normal + 1.0) * 0.5 elif bsdf == 'geo_normal': shaded_col = (gb_geometric_normal + 1.0) * 0.5 elif bsdf == 'tangent': shaded_col = (gb_tangent + 1.0) * 0.5 elif bsdf == 'kd': shaded_col = kd elif bsdf == 'ks': shaded_col = ks else: assert False, "Invalid BSDF '%s'" % bsdf # Return multiple buffers buffers = { 'kd' : torch.cat((kd, alpha), dim=-1), 'shaded' : torch.cat((shaded_col, alpha), dim=-1), # 'kd_grad' : torch.cat((kd_grad, alpha), dim=-1), # 'occlusion' : torch.cat((ks[..., :1], alpha), dim=-1), } if dino_pred is not None: buffers['dino_feat_im_pred'] = torch.cat((dino_feat_im_pred, alpha), dim=-1) if delta_xy_interp is not None: buffers['flow'] = torch.cat((delta_xy_interp, alpha), dim=-1) if shading is not None: buffers['shading'] = torch.cat((shading, alpha), dim=-1) return buffers # ============================================================================================== # Render a depth slice of the mesh (scene), some limitations: # - Single light # - Single material # ============================================================================================== def render_layer( rast, rast_deriv, mesh, w2c, view_pos, material, lgt, resolution, spp, msaa, bsdf, feat, prior_mesh, two_sided_shading, render_flow, delta_xy=None, dino_pred=None, class_vector=None, im_features_map=None, mvp=None ): full_res = [resolution[0]*spp, resolution[1]*spp] if prior_mesh is None: prior_mesh = mesh ################################################################################ # Rasterize ################################################################################ # Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution if spp > 1 and msaa: rast_out_s = util.scale_img_nhwc(rast, resolution, mag='nearest', min='nearest') rast_out_deriv_s = util.scale_img_nhwc(rast_deriv, resolution, mag='nearest', min='nearest') * spp else: rast_out_s = rast rast_out_deriv_s = rast_deriv if render_flow: delta_xy_interp, _ = interpolate(delta_xy, rast_out_s, mesh.t_pos_idx[0].int()) else: delta_xy_interp = None ################################################################################ # Interpolate attributes ################################################################################ # Interpolate world space position gb_pos, _ = interpolate(mesh.v_pos, rast_out_s, mesh.t_pos_idx[0].int()) # Compute geometric normals. We need those because of bent normals trick (for bump mapping) v0 = mesh.v_pos[:, mesh.t_pos_idx[0, :, 0], :] v1 = mesh.v_pos[:, mesh.t_pos_idx[0, :, 1], :] v2 = mesh.v_pos[:, mesh.t_pos_idx[0, :, 2], :] face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0, dim=-1)) num_faces = face_normals.shape[1] face_normal_indices = (torch.arange(0, num_faces, dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3) gb_geometric_normal, _ = interpolate(face_normals, rast_out_s, face_normal_indices.int()) # Compute tangent space assert mesh.v_nrm is not None and mesh.v_tng is not None gb_normal, _ = interpolate(mesh.v_nrm, rast_out_s, mesh.t_nrm_idx[0].int()) gb_tangent, _ = interpolate(mesh.v_tng, rast_out_s, mesh.t_tng_idx[0].int()) # Interpolate tangents # Texture coordinate assert mesh.v_tex is not None gb_texc, gb_texc_deriv = interpolate(mesh.v_tex, rast_out_s, mesh.t_tex_idx[0].int(), rast_db=rast_out_deriv_s) ################################################################################ # Shade ################################################################################ gb_tex_pos, _ = interpolate(prior_mesh.v_pos, rast_out_s, mesh.t_pos_idx[0].int()) buffers = shade(gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_tex_pos, gb_texc, gb_texc_deriv, w2c, view_pos, lgt, material, bsdf, feat=feat, two_sided_shading=two_sided_shading, delta_xy_interp=delta_xy_interp, dino_pred=dino_pred, class_vector=class_vector, im_features_map=im_features_map, mvp=mvp) ################################################################################ # Prepare output ################################################################################ # Scale back up to visibility resolution if using MSAA if spp > 1 and msaa: for key in buffers.keys(): buffers[key] = util.scale_img_nhwc(buffers[key], full_res, mag='nearest', min='nearest') # Return buffers return buffers # ============================================================================================== # Render a depth peeled mesh (scene), some limitations: # - Single light # - Single material # ============================================================================================== def render_mesh( ctx, mesh, mtx_in, w2c, view_pos, material, lgt, resolution, spp = 1, num_layers = 1, msaa = False, background = None, bsdf = None, feat = None, prior_mesh = None, two_sided_shading = True, render_flow = False, dino_pred = None, class_vector = None, num_frames = None, im_features_map = None ): def prepare_input_vector(x): x = torch.tensor(x, dtype=torch.float32, device='cuda') if not torch.is_tensor(x) else x return x[:, None, None, :] if len(x.shape) == 2 else x def composite_buffer(key, layers, background, antialias): accum = background for buffers, rast in reversed(layers): alpha = (rast[..., -1:] > 0).float() * buffers[key][..., -1:] accum = torch.lerp(accum, torch.cat((buffers[key][..., :-1], torch.ones_like(buffers[key][..., -1:])), dim=-1), alpha) if antialias: accum = dr.antialias(accum.contiguous(), rast, v_pos_clip, mesh.t_pos_idx[0].int()) return accum assert mesh.t_pos_idx.shape[1] > 0, "Got empty training triangle mesh (unrecoverable discontinuity)" assert background is None or (background.shape[1] == resolution[0] and background.shape[2] == resolution[1]) full_res = [resolution[0] * spp, resolution[1] * spp] # Convert numpy arrays to torch tensors mtx_in = torch.tensor(mtx_in, dtype=torch.float32, device='cuda') if not torch.is_tensor(mtx_in) else mtx_in view_pos = prepare_input_vector(view_pos) # Shape: (B, 1, 1, 3) # clip space transform v_pos_clip = ru.xfm_points(mesh.v_pos, mtx_in, use_python=True) # render flow if render_flow: v_pos_clip2 = v_pos_clip[..., :2] / v_pos_clip[..., -1:] v_pos_clip2 = v_pos_clip2.view(-1, num_frames, *v_pos_clip2.shape[1:]) delta_xy = v_pos_clip2[:, 1:] - v_pos_clip2[:, :-1] delta_xy = torch.cat([delta_xy, torch.zeros_like(delta_xy[:, :1])], dim=1) delta_xy = delta_xy.view(-1, *delta_xy.shape[2:]) else: delta_xy = None # Render all layers front-to-back layers = [] with dr.DepthPeeler(ctx, v_pos_clip, mesh.t_pos_idx[0].int(), full_res) as peeler: for _ in range(num_layers): rast, db = peeler.rasterize_next_layer() rendered = render_layer(rast, db, mesh, w2c, view_pos, material, lgt, resolution, spp, msaa, bsdf, feat=feat, prior_mesh=prior_mesh, two_sided_shading=two_sided_shading, render_flow=render_flow, delta_xy=delta_xy, dino_pred=dino_pred, class_vector=class_vector, im_features_map=im_features_map, mvp=mtx_in) layers += [(rendered, rast)] # Setup background if background is not None: if spp > 1: background = util.scale_img_nhwc(background, full_res, mag='nearest', min='nearest') background = torch.cat((background, torch.zeros_like(background[..., 0:1])), dim=-1) else: background = torch.zeros(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda') # Composite layers front-to-back out_buffers = {} for key in layers[0][0].keys(): antialias = key in ['shaded', 'dino_feat_im_pred', 'flow'] bg = background if key in ['shaded'] else torch.zeros_like(layers[0][0][key]) accum = composite_buffer(key, layers, bg, antialias) # Downscale to framebuffer resolution. Use avg pooling out_buffers[key] = util.avg_pool_nhwc(accum, spp) if spp > 1 else accum return out_buffers # ============================================================================================== # Render UVs # ============================================================================================== def render_uv(ctx, mesh, resolution, mlp_texture, feat=None, prior_shape=None): # clip space transform uv_clip = mesh.v_tex * 2.0 - 1.0 # pad to four component coordinate uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[...,0:1]), torch.ones_like(uv_clip[...,0:1])), dim = -1) # rasterize rast, _ = dr.rasterize(ctx, uv_clip4, mesh.t_tex_idx[0].int(), resolution) # Interpolate world space position if prior_shape is not None: gb_pos, _ = interpolate(prior_shape.v_pos, rast, mesh.t_pos_idx[0].int()) else: gb_pos, _ = interpolate(mesh.v_pos, rast, mesh.t_pos_idx[0].int()) # Sample out textures from MLP all_tex = mlp_texture.sample(gb_pos, feat=feat) assert all_tex.shape[-1] == 9 or all_tex.shape[-1] == 10, "Combined kd_ks_normal must be 9 or 10 channels" perturbed_nrm = all_tex[..., -3:] return (rast[..., -1:] > 0).float(), all_tex[..., :-6], all_tex[..., -6:-3], util.safe_normalize(perturbed_nrm)