# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. from difflib import unified_diff import os import numpy as np import torch from . import obj from . import util ######################################################################################### # Base mesh class # # Minibatch in mesh is supported, as long as each mesh shares the same edge connectivity. ######################################################################################### class Mesh: def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): self.v_pos = v_pos self.v_nrm = v_nrm self.v_tex = v_tex self.v_tng = v_tng self.t_pos_idx = t_pos_idx self.t_nrm_idx = t_nrm_idx self.t_tex_idx = t_tex_idx self.t_tng_idx = t_tng_idx self.material = material if base is not None: self.copy_none(base) def __len__(self): return len(self.v_pos) def copy_none(self, other): if self.v_pos is None: self.v_pos = other.v_pos if self.t_pos_idx is None: self.t_pos_idx = other.t_pos_idx if self.v_nrm is None: self.v_nrm = other.v_nrm if self.t_nrm_idx is None: self.t_nrm_idx = other.t_nrm_idx if self.v_tex is None: self.v_tex = other.v_tex if self.t_tex_idx is None: self.t_tex_idx = other.t_tex_idx if self.v_tng is None: self.v_tng = other.v_tng if self.t_tng_idx is None: self.t_tng_idx = other.t_tng_idx if self.material is None: self.material = other.material def clone(self): out = Mesh(base=self) if out.v_pos is not None: out.v_pos = out.v_pos.clone().detach() if out.t_pos_idx is not None: out.t_pos_idx = out.t_pos_idx.clone().detach() if out.v_nrm is not None: out.v_nrm = out.v_nrm.clone().detach() if out.t_nrm_idx is not None: out.t_nrm_idx = out.t_nrm_idx.clone().detach() if out.v_tex is not None: out.v_tex = out.v_tex.clone().detach() if out.t_tex_idx is not None: out.t_tex_idx = out.t_tex_idx.clone().detach() if out.v_tng is not None: out.v_tng = out.v_tng.clone().detach() if out.t_tng_idx is not None: out.t_tng_idx = out.t_tng_idx.clone().detach() return out def detach(self): return self.clone() def extend(self, N: int): """ Create new Mesh class which contains each input mesh N times. Args: N: number of new copies of each mesh. Returns: new Mesh object. """ verts = self.v_pos.repeat(N, 1, 1) faces = self.t_pos_idx uvs = self.v_tex.repeat(N, 1, 1) uv_idx = self.t_tex_idx mat = self.material return make_mesh(verts, faces, uvs, uv_idx, self.material) def deform(self, deformation): """ Create new Mesh class which is obtained by performing the deformation to the self. Args: deformation: tensor with shape (B, V, 3) Returns: new Mesh object after the deformation. """ assert deformation.shape[1] == self.v_pos.shape[1] and deformation.shape[2] == 3 verts = self.v_pos + deformation return make_mesh(verts, self.t_pos_idx, self.v_tex.repeat(len(verts), 1, 1), self.t_tex_idx, self.material) def get_m_to_n(self, m: int, n: int): """ Create new Mesh class with the n-th (included) mesh to the m-th (not included) mesh in the batch. Args: m: the index of the starting mesh to be contained. n: the index of the first mesh not to be contained. """ verts = self.v_pos[m:n, ...] faces = self.t_pos_idx uvs = self.v_tex[m:n, ...] uv_idx = self.t_tex_idx mat = self.material return make_mesh(verts, faces, uvs, uv_idx, mat) def first_n(self, n: int): """ Create new Mesh class with only the first n meshes in the batch. Args: n: number of meshes to be contained. Returns: new Mesh object with the first n meshes. """ return self.get_m_to_n(0, n) verts = self.v_pos[:n, ...] faces = self.t_pos_idx uvs = self.v_tex[:n, ...] uv_idx = self.t_tex_idx mat = self.material return make_mesh(verts, faces, uvs, uv_idx, mat) def get_n(self, n: int): """ Create new Mesh class with only the n-th meshes in the batch. Args: n: the index of the mesh to be contained. Returns: new Mesh object with the n-th mesh. """ verts = self.v_pos[n:n+1, ...] faces = self.t_pos_idx uvs = self.v_tex[n:n+1, ...] uv_idx = self.t_tex_idx mat = self.material return make_mesh(verts, faces, uvs, uv_idx, mat) ###################################################################################### # Mesh loading helper ###################################################################################### def load_mesh(filename, mtl_override=None): name, ext = os.path.splitext(filename) if ext == ".obj": return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override) assert False, "Invalid mesh file extension" ###################################################################################### # Compute AABB ###################################################################################### def aabb(mesh): return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values ###################################################################################### # Compute unique edge list from attribute/vertex index list ###################################################################################### def compute_edges(attr_idx, return_inverse=False): with torch.no_grad(): # Create all edges, packed by triangle idx = attr_idx[0] all_edges = torch.cat(( torch.stack((idx[:, 0], idx[:, 1]), dim=-1), torch.stack((idx[:, 1], idx[:, 2]), dim=-1), torch.stack((idx[:, 2], idx[:, 0]), dim=-1), ), dim=-1).view(-1, 2) # Swap edge order so min index is always first order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) sorted_edges = torch.cat(( torch.gather(all_edges, 1, order), torch.gather(all_edges, 1, 1 - order) ), dim=-1) # Eliminate duplicates and return inverse mapping return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse) ###################################################################################### # Compute unique edge to face mapping from attribute/vertex index list ###################################################################################### def compute_edge_to_face_mapping(attr_idx, return_inverse=False): with torch.no_grad(): # Get unique edges # Create all edges, packed by triangle idx = attr_idx[0] all_edges = torch.cat(( torch.stack((idx[:, 0], idx[:, 1]), dim=-1), torch.stack((idx[:, 1], idx[:, 2]), dim=-1), torch.stack((idx[:, 2], idx[:, 0]), dim=-1), ), dim=-1).view(-1, 2) # Swap edge order so min index is always first order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) sorted_edges = torch.cat(( torch.gather(all_edges, 1, order), torch.gather(all_edges, 1, 1 - order) ), dim=-1) # Elliminate duplicates and return inverse mapping unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) tris = torch.arange(idx.shape[0]).repeat_interleave(3).cuda() tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() # Compute edge to face table mask0 = order[:,0] == 0 mask1 = order[:,0] == 1 tris_per_edge[idx_map[mask0], 0] = tris[mask0] tris_per_edge[idx_map[mask1], 1] = tris[mask1] return tris_per_edge ###################################################################################### # Align base mesh to reference mesh:move & rescale to match bounding boxes. ###################################################################################### def unit_size(mesh): with torch.no_grad(): vmin, vmax = aabb(mesh) scale = 2 / torch.max(vmax - vmin).item() v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin v_pos = v_pos * scale # Rescale to unit size return Mesh(v_pos, base=mesh) ###################################################################################### # Center & scale mesh for rendering ###################################################################################### def center_by_reference(base_mesh, ref_aabb, scale): center = (ref_aabb[0] + ref_aabb[1]) * 0.5 scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item() v_pos = (base_mesh.v_pos - center[None, ...]) * scale return Mesh(v_pos, base=base_mesh) ###################################################################################### # Simple smooth vertex normal computation ###################################################################################### def auto_normals(imesh): batch_size = imesh.v_pos.shape[0] i0 = imesh.t_pos_idx[0, :, 0] # Shape: (F) i1 = imesh.t_pos_idx[0, :, 1] # Shape: (F) i2 = imesh.t_pos_idx[0, :, 2] # Shape: (F) v0 = imesh.v_pos[:, i0, :] # Shape: (B, F, 3) v1 = imesh.v_pos[:, i1, :] # Shape: (B, F, 3) v2 = imesh.v_pos[:, i2, :] # Shape: (B, F, 3) face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) # Shape: (B, F, 3) # Splat face normals to vertices v_nrm = torch.zeros_like(imesh.v_pos) # Shape: (B, V, 3) v_nrm.scatter_add_(1, i0[None, :, None].repeat(batch_size, 1, 3), face_normals) v_nrm.scatter_add_(1, i1[None, :, None].repeat(batch_size, 1, 3), face_normals) v_nrm.scatter_add_(1, i2[None, :, None].repeat(batch_size, 1, 3), face_normals) # Normalize, replace zero (degenerated) normals with some default value v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) v_nrm = util.safe_normalize(v_nrm) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(v_nrm)) return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh) ###################################################################################### # Compute tangent space from texture map coordinates # Follows http://www.mikktspace.com/ conventions ###################################################################################### def compute_tangents(imesh): batch_size = imesh.v_pos.shape[0] vn_idx = [None] * 3 pos = [None] * 3 tex = [None] * 3 for i in range(0,3): pos[i] = imesh.v_pos[:, imesh.t_pos_idx[0, :, i]] tex[i] = imesh.v_tex[:, imesh.t_tex_idx[0, :, i]] vn_idx[i] = imesh.t_nrm_idx[..., i:i+1] tangents = torch.zeros_like(imesh.v_nrm) tansum = torch.zeros_like(imesh.v_nrm) # Compute tangent space for each triangle uve1 = tex[1] - tex[0] # Shape: (B, F, 2) uve2 = tex[2] - tex[0] # Shape: (B, F, 2) pe1 = pos[1] - pos[0] # Shape: (B, F, 3) pe2 = pos[2] - pos[0] # Shape: (B, F, 3) nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2] # Shape: (B, F, 3) denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1] # Shape: (B, F, 1) # Avoid division by zero for degenerated texture coordinates tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)) # Shape: (B, F, 3) # Update all 3 vertices for i in range(0,3): idx = vn_idx[i].repeat(batch_size, 1, 3) # Shape: (B, F, 3) tangents.scatter_add_(1, idx, tang) # tangents[n_i] = tangents[n_i] + tang tansum.scatter_add_(1, idx, torch.ones_like(tang)) # tansum[n_i] = tansum[n_i] + 1 tangents = tangents / tansum # Normalize and make sure tangent is perpendicular to normal tangents = util.safe_normalize(tangents) tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(tangents)) return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh) ###################################################################################### # Create new Mesh from verts, faces, uvs, and uv_idx. The rest is auto computed. ###################################################################################### def make_mesh(verts, faces, uvs, uv_idx, material): """ Create new Mesh class with given verts, faces, uvs, and uv_idx. Args: verts: tensor of shape (B, V, 3) faces: tensor of shape (1, F, 3) uvs: tensor of shape (B, V, 2) uv_idx: tensor of shape (1, F, 3) material: an Material instance, specifying the material of the mesh. Returns: new Mesh object. """ assert len(verts.shape) == 3 and len(faces.shape) == 3 and len(uvs.shape) == 3 and len(uv_idx.shape) == 3, "All components must be batched." assert faces.shape[0] == 1 and uv_idx.shape[0] == 1, "Every mesh must share the same edge connectivity." assert verts.shape[0] == uvs.shape[0], "Batch size must be consistent." ret = Mesh(verts, faces, v_tex=uvs, t_tex_idx=uv_idx, material=material) ret = auto_normals(ret) ret = compute_tangents(ret) return ret