# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional import torch.nn.functional as F from torch import Tensor from mmseg.registry import MODELS from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig, OptSampleList, SampleList, add_prefix) from .base import BaseSegmentor @MODELS.register_module() class MultimodalEncoderDecoder(BaseSegmentor): """Multimodal Encoder-Decoder segmentors. Multimodal segmentation architecture is used for open-vocabulary semantic segmentation with combining the visual and language pretrain models. It consists of a image_encoder (backbone) to extract visual feature, a text encoder to extract text feature, and a decode head to generate semantic maps. Note that the deep supervision during training is implemented in decode head. 1. The ``loss`` method is used to calculate the loss of model, which includes two steps: (1) Extracts features to obtain the feature maps (2) Call the decode head loss function to forward decode head model and calculate losses. .. code:: text loss(): extract_feat() -> _decode_head_forward_train() _decode_head_forward_train(): decode_head.loss() 2. The ``predict`` method is used to predict segmentation results, which includes two steps: (1) Run inference function to obtain the list of seg_logits (2) Call post-processing function to obtain list of ``SegDataSampel`` including ``pred_sem_seg`` and ``seg_logits``. .. code:: text predict(): inference() -> postprocess_result() inference(): whole_inference()/slide_inference() whole_inference()/slide_inference(): encoder_decoder() encoder_decoder(): extract_feat() -> decode_head.predict() 3. The ``_forward`` method is used to output the tensor by running the model, which includes two steps: (1) Extracts features to obtain the feature maps (2)Call the decode head forward function to forward decode head model. .. code:: text _forward(): extract_feat() -> _decode_head.forward() Args: image_encoder (ConfigType): The config for the visual encoder of segmentor. text_encoder ((ConfigType): The config for the text encoder of segmentor. decode_head (ConfigType): The config for the decode head of segmentor. train_cfg (OptConfigType): The config for training. Defaults to None. test_cfg (OptConfigType): The config for testing. Defaults to None. data_preprocessor (dict, optional): The pre-process config of :class:`BaseDataPreprocessor`. pretrained (str, optional): The path for pretrained model. Defaults to None. asymetric_input (bool): whether to use different size of input for image encoder and decode head. Defaults to False. encoder_resolution (float): resize scale of input images for image encoder. Defaults to None. init_cfg (dict, optional): The weight initialized config for :class:`BaseModule`. """ # noqa: E501 def __init__(self, image_encoder: ConfigType, text_encoder: ConfigType, decode_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, pretrained: Optional[str] = None, asymetric_input: bool = True, encoder_resolution: float = None, init_cfg: OptMultiConfig = None): super().__init__( data_preprocessor=data_preprocessor, init_cfg=init_cfg) if pretrained is not None: image_encoder.init_cfg = dict( type='Pretrained_Part', checkpoint=pretrained) text_encoder.init_cfg = dict( type='Pretrained_Part', checkpoint=pretrained) decode_head.init_cfg = dict( type='Pretrained_Part', checkpoint=pretrained) if asymetric_input: assert encoder_resolution is not None, \ 'if asymetric_input set True, ' \ 'clip_resolution must be a certain value' self.asymetric_input = asymetric_input self.encoder_resolution = encoder_resolution self.image_encoder = MODELS.build(image_encoder) self.text_encoder = MODELS.build(text_encoder) self._init_decode_head(decode_head) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head def _init_decode_head(self, decode_head: ConfigType) -> None: """Initialize ``decode_head``""" self.decode_head = MODELS.build(decode_head) self.align_corners = self.decode_head.align_corners self.num_classes = self.decode_head.num_classes self.out_channels = self.decode_head.out_channels def extract_feat(self, inputs: Tensor) -> List[Tensor]: """Extract visual features from images.""" x = self.image_encoder(inputs) return x def encode_decode(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor: """Encode the name of classes with text_encoder and encode images with image_encoder. Then decode the class embedding and visual feature into a semantic segmentation map of the same size as input. """ classifier_embeds = self.text_encoder() clip_inputs = inputs if self.asymetric_input: clip_inputs = F.interpolate( inputs, scale_factor=self.encoder_resolution, mode='bilinear') x = self.image_encoder(clip_inputs) seg_logits = self.decode_head.predict([inputs, x, classifier_embeds], batch_img_metas, self.test_cfg) return seg_logits def _decode_head_forward_train(self, inputs: List[Tensor], data_samples: SampleList) -> dict: """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.loss(inputs, data_samples, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def loss(self, inputs: Tensor, data_samples: SampleList) -> dict: """Calculate losses from a batch of inputs and data samples. Args: inputs (Tensor): Input images. data_samples (list[:obj:`SegDataSample`]): The seg data samples. It usually includes information such as `metainfo` and `gt_sem_seg`. Returns: dict[str, Tensor]: a dictionary of loss components """ classifier_embeds = self.text_encoder() clip_inputs = inputs if self.asymetric_input: clip_inputs = F.interpolate( inputs, scale_factor=self.encoder_resolution, mode='bilinear') x = self.image_encoder(clip_inputs) losses = dict() loss_decode = self._decode_head_forward_train( [inputs, x, classifier_embeds], data_samples) losses.update(loss_decode) return losses def predict(self, inputs: Tensor, data_samples: OptSampleList = None) -> SampleList: """Predict results from a batch of inputs and data samples with post- processing. Args: inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`SegDataSample`], optional): The seg data samples. It usually includes information such as `metainfo` and `gt_sem_seg`. Returns: list[:obj:`SegDataSample`]: Segmentation results of the input images. Each SegDataSample usually contain: - ``pred_sem_seg``(PixelData): Prediction of semantic segmentation. - ``seg_logits``(PixelData): Predicted logits of semantic segmentation before normalization. """ if data_samples is not None: batch_img_metas = [ data_sample.metainfo for data_sample in data_samples ] else: batch_img_metas = [ dict( ori_shape=inputs.shape[2:], img_shape=inputs.shape[2:], pad_shape=inputs.shape[2:], padding_size=[0, 0, 0, 0]) ] * inputs.shape[0] seg_logits = self.inference(inputs, batch_img_metas) return self.postprocess_result(seg_logits, data_samples) def _forward(self, inputs: Tensor, data_samples: OptSampleList = None) -> Tensor: """Network forward process. Args: inputs (Tensor): Inputs with shape (N, C, H, W). data_samples (List[:obj:`SegDataSample`]): The seg data samples. It usually includes information such as `metainfo` and `gt_sem_seg`. Returns: Tensor: Forward output of model without any post-processes. """ x = self.extract_feat(inputs) return self.decode_head.forward(x) def slide_inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor: """Inference by sliding-window with overlap. If h_crop > h_img or w_crop > w_img, the small patch will be used to decode without padding. Args: inputs (tensor): the tensor should have a shape NxCxHxW, which contains all images in the batch. batch_img_metas (List[dict]): List of image metainfo where each may also contain: 'img_shape', 'scale_factor', 'flip', 'img_path', 'ori_shape', and 'pad_shape'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:PackSegInputs`. Returns: Tensor: The segmentation results, seg_logits from model of each input image. """ h_stride, w_stride = self.test_cfg.stride h_crop, w_crop = self.test_cfg.crop_size batch_size, _, h_img, w_img = inputs.size() out_channels = self.out_channels h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1 w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1 preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img)) count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img)) for h_idx in range(h_grids): for w_idx in range(w_grids): y1 = h_idx * h_stride x1 = w_idx * w_stride y2 = min(y1 + h_crop, h_img) x2 = min(x1 + w_crop, w_img) y1 = max(y2 - h_crop, 0) x1 = max(x2 - w_crop, 0) crop_img = inputs[:, :, y1:y2, x1:x2] # change the image shape to patch shape batch_img_metas[0]['img_shape'] = crop_img.shape[2:] # the output of encode_decode is seg logits tensor map # with shape [N, C, H, W] crop_seg_logit = self.encode_decode(crop_img, batch_img_metas) preds += F.pad(crop_seg_logit, (int(x1), int(preds.shape[3] - x2), int(y1), int(preds.shape[2] - y2))) count_mat[:, :, y1:y2, x1:x2] += 1 assert (count_mat == 0).sum() == 0 seg_logits = preds / count_mat return seg_logits def whole_inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor: """Inference with full image. Args: inputs (Tensor): The tensor should have a shape NxCxHxW, which contains all images in the batch. batch_img_metas (List[dict]): List of image metainfo where each may also contain: 'img_shape', 'scale_factor', 'flip', 'img_path', 'ori_shape', and 'pad_shape'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:PackSegInputs`. Returns: Tensor: The segmentation results, seg_logits from model of each input image. """ seg_logits = self.encode_decode(inputs, batch_img_metas) return seg_logits def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor: """Inference with slide/whole style. Args: inputs (Tensor): The input image of shape (N, 3, H, W). batch_img_metas (List[dict]): List of image metainfo where each may also contain: 'img_shape', 'scale_factor', 'flip', 'img_path', 'ori_shape', 'pad_shape', and 'padding_size'. For details on the values of these keys see `mmseg/datasets/pipelines/formatting.py:PackSegInputs`. Returns: Tensor: The segmentation results, seg_logits from model of each input image. """ assert self.test_cfg.mode in ['slide', 'whole'] ori_shape = batch_img_metas[0]['ori_shape'] assert all(_['ori_shape'] == ori_shape for _ in batch_img_metas) if self.test_cfg.mode == 'slide': seg_logit = self.slide_inference(inputs, batch_img_metas) else: seg_logit = self.whole_inference(inputs, batch_img_metas) return seg_logit def aug_test(self, inputs, batch_img_metas, rescale=True): """Test with augmentations. Only rescale=True is supported. """ # aug_test rescale all imgs back to ori_shape for now assert rescale # to save memory, we get augmented seg logit inplace seg_logit = self.inference(inputs[0], batch_img_metas[0], rescale) for i in range(1, len(inputs)): cur_seg_logit = self.inference(inputs[i], batch_img_metas[i], rescale) seg_logit += cur_seg_logit seg_logit /= len(inputs) seg_pred = seg_logit.argmax(dim=1) # unravel batch dim seg_pred = list(seg_pred) return seg_pred