# Copyright (c) OpenMMLab. All rights reserved. from mmengine.config import read_base from mmpretrain.engine import EMAHook with read_base(): from .._base_.datasets.imagenet_bs64_swin_384 import * from .._base_.default_runtime import * from .._base_.models.convnext_base import * from .._base_.schedules.imagenet_bs1024_adamw_swin import * # dataset setting train_dataloader.update(batch_size=128) # schedule setting optim_wrapper.update( optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0), ) # runtime setting custom_hooks = [dict(type=EMAHook, momentum=4e-5, priority='ABOVE_NORMAL')] # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (32 GPUs) x (128 samples per GPU) auto_scale_lr.update(base_batch_size=4096)