# Copyright (c) OpenMMLab. All rights reserved. # This is a BETA new format config file, and the usage may change recently. from mmengine.config import read_base with read_base(): from ..._base_.datasets.imagenet_bs64_swin_224 import * from ..._base_.schedules.imagenet_bs1024_adamw_swin import * from ..._base_.default_runtime import * from mmengine.model import ConstantInit, TruncNormalInit from mmpretrain.models import (BEiTViT, ImageClassifier, LabelSmoothLoss, LinearClsHead) from mmpretrain.models.utils.batch_augments import CutMix, Mixup data_preprocessor = dict( num_classes=1000, # RGB format normalization parameters mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], # convert image from BGR to RGB to_rgb=True, ) model = dict( type=ImageClassifier, backbone=dict( type=BEiTViT, arch='base', img_size=224, patch_size=16, out_type='avg_featmap', use_abs_pos_emb=False, use_rel_pos_bias=True, use_shared_rel_pos_bias=False, ), neck=None, head=dict( type=LinearClsHead, num_classes=1000, in_channels=768, loss=dict(type=LabelSmoothLoss, label_smooth_val=0.1, mode='original'), ), init_cfg=[ dict(type=TruncNormalInit, layer='Linear', std=.02), dict(type=ConstantInit, layer='LayerNorm', val=1., bias=0.), ], train_cfg=dict( augments=[dict(type=Mixup, alpha=0.8), dict(type=CutMix, alpha=1.0)]))