Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from abc import ABCMeta, abstractmethod | |
from typing import List | |
from torch import Tensor | |
from mmseg.utils import ConfigType | |
from .decode_head import BaseDecodeHead | |
class BaseCascadeDecodeHead(BaseDecodeHead, metaclass=ABCMeta): | |
"""Base class for cascade decode head used in | |
:class:`CascadeEncoderDecoder.""" | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, inputs, prev_output): | |
"""Placeholder of forward function.""" | |
pass | |
def loss(self, inputs: List[Tensor], prev_output: Tensor, | |
batch_data_samples: List[dict], train_cfg: ConfigType) -> Tensor: | |
"""Forward function for training. | |
Args: | |
inputs (List[Tensor]): List of multi-level img features. | |
prev_output (Tensor): The output of previous decode head. | |
batch_data_samples (List[:obj:`SegDataSample`]): The seg | |
data samples. It usually includes information such | |
as `metainfo` and `gt_sem_seg`. | |
train_cfg (dict): The training config. | |
Returns: | |
dict[str, Tensor]: a dictionary of loss components | |
""" | |
seg_logits = self.forward(inputs, prev_output) | |
losses = self.loss_by_feat(seg_logits, batch_data_samples) | |
return losses | |
def predict(self, inputs: List[Tensor], prev_output: Tensor, | |
batch_img_metas: List[dict], tese_cfg: ConfigType): | |
"""Forward function for testing. | |
Args: | |
inputs (List[Tensor]): List of multi-level img features. | |
prev_output (Tensor): The output of previous decode head. | |
batch_img_metas (dict): List Image info where each dict may also | |
contain: 'img_shape', 'scale_factor', 'flip', 'img_path', | |
'ori_shape', and 'pad_shape'. | |
For details on the values of these keys see | |
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`. | |
test_cfg (dict): The testing config. | |
Returns: | |
Tensor: Output segmentation map. | |
""" | |
seg_logits = self.forward(inputs, prev_output) | |
return self.predict_by_feat(seg_logits, batch_img_metas) | |