from typing import List from mmpl.registry import DATASETS from mmdet.datasets.coco import CocoDataset @DATASETS.register_module() class SSDDInsSegDataset(CocoDataset): """Dataset for Cityscapes.""" METAINFO = { 'classes': ['ship'], 'palette': [(0, 0, 255)] } def filter_data(self) -> List[dict]: """Filter annotations according to filter_cfg. Returns: List[dict]: Filtered results. """ # if self.test_mode: # return self.data_list if self.filter_cfg is None: return self.data_list filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) min_size = self.filter_cfg.get('min_size', 0) # obtain images that contain annotation ids_with_ann = set(data_info['img_id'] for data_info in self.data_list) # obtain images that contain annotations of the required categories ids_in_cat = set() for i, class_id in enumerate(self.cat_ids): ids_in_cat |= set(self.cat_img_map[class_id]) # merge the image id sets of the two conditions and use the merged set # to filter out images if self.filter_empty_gt=True ids_in_cat &= ids_with_ann valid_data_infos = [] for i, data_info in enumerate(self.data_list): img_id = data_info['img_id'] width = data_info['width'] height = data_info['height'] all_is_crowd = all([ instance['ignore_flag'] == 1 for instance in data_info['instances'] ]) if filter_empty_gt and (img_id not in ids_in_cat or all_is_crowd): continue if min(width, height) >= min_size: valid_data_infos.append(data_info) return valid_data_infos