Spaces:
Runtime error
Runtime error
File size: 17,166 Bytes
2ae34e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, Optional, Union
import mmcv
import mmengine.fileio as fileio
import numpy as np
from mmcv.transforms import BaseTransform
from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations
from mmcv.transforms import LoadImageFromFile
from mmseg.registry import TRANSFORMS
from mmseg.utils import datafrombytes
@TRANSFORMS.register_module()
class LoadAnnotations(MMCV_LoadAnnotations):
"""Load annotations for semantic segmentation provided by dataset.
The annotation format is as the following:
.. code-block:: python
{
# Filename of semantic segmentation ground truth file.
'seg_map_path': 'a/b/c'
}
After this module, the annotation has been changed to the format below:
.. code-block:: python
{
# in str
'seg_fields': List
# In uint8 type.
'gt_seg_map': np.ndarray (H, W)
}
Required Keys:
- seg_map_path (str): Path of semantic segmentation ground truth file.
Added Keys:
- seg_fields (List)
- gt_seg_map (np.uint8)
Args:
reduce_zero_label (bool, optional): Whether reduce all label value
by 1. Usually used for datasets where 0 is background label.
Defaults to None.
imdecode_backend (str): The image decoding backend type. The backend
argument for :func:``mmcv.imfrombytes``.
See :fun:``mmcv.imfrombytes`` for details.
Defaults to 'pillow'.
backend_args (dict): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to None.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(
self,
label_id_map={},
reduce_zero_label=None,
backend_args=None,
imdecode_backend='pillow',
) -> None:
super().__init__(
with_bbox=False,
with_label=False,
with_seg=True,
with_keypoints=False,
imdecode_backend=imdecode_backend,
backend_args=backend_args)
self.label_id_map = label_id_map
self.reduce_zero_label = reduce_zero_label
if self.reduce_zero_label is not None:
warnings.warn('`reduce_zero_label` will be deprecated, '
'if you would like to ignore the zero label, please '
'set `reduce_zero_label=True` when dataset '
'initialized')
self.imdecode_backend = imdecode_backend
def _load_seg_map(self, results: dict) -> None:
"""Private function to load semantic segmentation annotations.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded semantic segmentation annotations.
"""
img_bytes = fileio.get(
results['seg_map_path'], backend_args=self.backend_args)
gt_semantic_seg = mmcv.imfrombytes(
img_bytes, flag='unchanged',
backend=self.imdecode_backend).squeeze().astype(np.uint8)
if np.any(gt_semantic_seg > 1):
raise ValueError('gt_semantic_seg should not contain value 255.')
for ori_id, new_id in self.label_id_map.items():
gt_semantic_seg[gt_semantic_seg == int(ori_id)] = new_id
# reduce zero_label
if self.reduce_zero_label is None:
self.reduce_zero_label = results['reduce_zero_label']
assert self.reduce_zero_label == results['reduce_zero_label'], \
'Initialize dataset with `reduce_zero_label` as ' \
f'{results["reduce_zero_label"]} but when load annotation ' \
f'the `reduce_zero_label` is {self.reduce_zero_label}'
if self.reduce_zero_label:
# avoid using underflow conversion
gt_semantic_seg[gt_semantic_seg == 0] = 255
gt_semantic_seg = gt_semantic_seg - 1
gt_semantic_seg[gt_semantic_seg == 254] = 255
# modify if custom classes
if results.get('label_map', None) is not None:
# Add deep copy to solve bug of repeatedly
# replace `gt_semantic_seg`, which is reported in
# https://github.com/open-mmlab/mmsegmentation/pull/1445/
gt_semantic_seg_copy = gt_semantic_seg.copy()
for old_id, new_id in results['label_map'].items():
gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
results['gt_seg_map'] = gt_semantic_seg
results['seg_fields'].append('gt_seg_map')
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(reduce_zero_label={self.reduce_zero_label}, '
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
repr_str += f'backend_args={self.backend_args})'
return repr_str
@TRANSFORMS.register_module()
class LoadImageFromNDArray(LoadImageFromFile):
"""Load an image from ``results['img']``.
Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
:obj:`np.ndarray` in ``results['img']``. Can be used when loading image
from webcam.
Required Keys:
- img
Modified Keys:
- img
- img_path
- img_shape
- ori_shape
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
"""
def transform(self, results: dict) -> dict:
"""Transform function to add image meta information.
Args:
results (dict): Result dict with Webcam read image in
``results['img']``.
Returns:
dict: The dict contains loaded image and meta information.
"""
img = results['img']
if self.to_float32:
img = img.astype(np.float32)
results['img_path'] = None
results['img'] = img
results['img_shape'] = img.shape[:2]
results['ori_shape'] = img.shape[:2]
return results
@TRANSFORMS.register_module()
class LoadBiomedicalImageFromFile(BaseTransform):
"""Load an biomedical mage from file.
Required Keys:
- img_path
Added Keys:
- img (np.ndarray): Biomedical image with shape (N, Z, Y, X) by default,
N is the number of modalities, and data type is float32
if set to_float32 = True, or float64 if decode_backend is 'nifti' and
to_float32 is False.
- img_shape
- ori_shape
Args:
decode_backend (str): The data decoding backend type. Options are
'numpy'and 'nifti', and there is a convention that when backend is
'nifti' the axis of data loaded is XYZ, and when backend is
'numpy', the the axis is ZYX. The data will be transposed if the
backend is 'nifti'. Defaults to 'nifti'.
to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
Defaults to False.
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an float64 array.
Defaults to True.
backend_args (dict, Optional): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to None.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(self,
decode_backend: str = 'nifti',
to_xyz: bool = False,
to_float32: bool = True,
backend_args: Optional[dict] = None) -> None:
self.decode_backend = decode_backend
self.to_xyz = to_xyz
self.to_float32 = to_float32
self.backend_args = backend_args.copy() if backend_args else None
def transform(self, results: Dict) -> Dict:
"""Functions to load image.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded image and meta information.
"""
filename = results['img_path']
data_bytes = fileio.get(filename, self.backend_args)
img = datafrombytes(data_bytes, backend=self.decode_backend)
if self.to_float32:
img = img.astype(np.float32)
if len(img.shape) == 3:
img = img[None, ...]
if self.decode_backend == 'nifti':
img = img.transpose(0, 3, 2, 1)
if self.to_xyz:
img = img.transpose(0, 3, 2, 1)
results['img'] = img
results['img_shape'] = img.shape[1:]
results['ori_shape'] = img.shape[1:]
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f"decode_backend='{self.decode_backend}', "
f'to_xyz={self.to_xyz}, '
f'to_float32={self.to_float32}, '
f'backend_args={self.backend_args})')
return repr_str
@TRANSFORMS.register_module()
class LoadBiomedicalAnnotation(BaseTransform):
"""Load ``seg_map`` annotation provided by biomedical dataset.
The annotation format is as the following:
.. code-block:: python
{
'gt_seg_map': np.ndarray (X, Y, Z) or (Z, Y, X)
}
Required Keys:
- seg_map_path
Added Keys:
- gt_seg_map (np.ndarray): Biomedical seg map with shape (Z, Y, X) by
default, and data type is float32 if set to_float32 = True, or
float64 if decode_backend is 'nifti' and to_float32 is False.
Args:
decode_backend (str): The data decoding backend type. Options are
'numpy'and 'nifti', and there is a convention that when backend is
'nifti' the axis of data loaded is XYZ, and when backend is
'numpy', the the axis is ZYX. The data will be transposed if the
backend is 'nifti'. Defaults to 'nifti'.
to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
Defaults to False.
to_float32 (bool): Whether to convert the loaded seg map to a float32
numpy array. If set to False, the loaded image is an float64 array.
Defaults to True.
backend_args (dict, Optional): Arguments to instantiate a file backend.
See :class:`mmengine.fileio` for details.
Defaults to None.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(self,
decode_backend: str = 'nifti',
to_xyz: bool = False,
to_float32: bool = True,
backend_args: Optional[dict] = None) -> None:
super().__init__()
self.decode_backend = decode_backend
self.to_xyz = to_xyz
self.to_float32 = to_float32
self.backend_args = backend_args.copy() if backend_args else None
def transform(self, results: Dict) -> Dict:
"""Functions to load image.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded image and meta information.
"""
data_bytes = fileio.get(results['seg_map_path'], self.backend_args)
gt_seg_map = datafrombytes(data_bytes, backend=self.decode_backend)
if self.to_float32:
gt_seg_map = gt_seg_map.astype(np.float32)
if self.decode_backend == 'nifti':
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
if self.to_xyz:
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
results['gt_seg_map'] = gt_seg_map
return results
def __repr__(self):
repr_str = (f'{self.__class__.__name__}('
f"decode_backend='{self.decode_backend}', "
f'to_xyz={self.to_xyz}, '
f'to_float32={self.to_float32}, '
f'backend_args={self.backend_args})')
return repr_str
@TRANSFORMS.register_module()
class LoadBiomedicalData(BaseTransform):
"""Load an biomedical image and annotation from file.
The loading data format is as the following:
.. code-block:: python
{
'img': np.ndarray data[:-1, X, Y, Z]
'seg_map': np.ndarray data[-1, X, Y, Z]
}
Required Keys:
- img_path
Added Keys:
- img (np.ndarray): Biomedical image with shape (N, Z, Y, X) by default,
N is the number of modalities.
- gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
(Z, Y, X) by default.
- img_shape
- ori_shape
Args:
with_seg (bool): Whether to parse and load the semantic segmentation
annotation. Defaults to False.
decode_backend (str): The data decoding backend type. Options are
'numpy'and 'nifti', and there is a convention that when backend is
'nifti' the axis of data loaded is XYZ, and when backend is
'numpy', the the axis is ZYX. The data will be transposed if the
backend is 'nifti'. Defaults to 'nifti'.
to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
Defaults to False.
backend_args (dict, Optional): Arguments to instantiate a file backend.
See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
for details. Defaults to None.
Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
"""
def __init__(self,
with_seg=False,
decode_backend: str = 'numpy',
to_xyz: bool = False,
backend_args: Optional[dict] = None) -> None: # noqa
self.with_seg = with_seg
self.decode_backend = decode_backend
self.to_xyz = to_xyz
self.backend_args = backend_args.copy() if backend_args else None
def transform(self, results: Dict) -> Dict:
"""Functions to load image.
Args:
results (dict): Result dict from :obj:``mmcv.BaseDataset``.
Returns:
dict: The dict contains loaded image and meta information.
"""
data_bytes = fileio.get(results['img_path'], self.backend_args)
data = datafrombytes(data_bytes, backend=self.decode_backend)
# img is 4D data (N, X, Y, Z), N is the number of protocol
img = data[:-1, :]
if self.decode_backend == 'nifti':
img = img.transpose(0, 3, 2, 1)
if self.to_xyz:
img = img.transpose(0, 3, 2, 1)
results['img'] = img
results['img_shape'] = img.shape[1:]
results['ori_shape'] = img.shape[1:]
if self.with_seg:
gt_seg_map = data[-1, :]
if self.decode_backend == 'nifti':
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
if self.to_xyz:
gt_seg_map = gt_seg_map.transpose(2, 1, 0)
results['gt_seg_map'] = gt_seg_map
return results
def __repr__(self) -> str:
repr_str = (f'{self.__class__.__name__}('
f'with_seg={self.with_seg}, '
f"decode_backend='{self.decode_backend}', "
f'to_xyz={self.to_xyz}, '
f'backend_args={self.backend_args})')
return repr_str
@TRANSFORMS.register_module()
class InferencerLoader(BaseTransform):
"""Load an image from ``results['img']``.
Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
:obj:`np.ndarray` in ``results['img']``. Can be used when loading image
from webcam.
Required Keys:
- img
Modified Keys:
- img
- img_path
- img_shape
- ori_shape
Args:
to_float32 (bool): Whether to convert the loaded image to a float32
numpy array. If set to False, the loaded image is an uint8 array.
Defaults to False.
"""
def __init__(self, **kwargs) -> None:
super().__init__()
self.from_file = TRANSFORMS.build(
dict(type='LoadImageFromFile', **kwargs))
self.from_ndarray = TRANSFORMS.build(
dict(type='LoadImageFromNDArray', **kwargs))
def transform(self, single_input: Union[str, np.ndarray, dict]) -> dict:
"""Transform function to add image meta information.
Args:
results (dict): Result dict with Webcam read image in
``results['img']``.
Returns:
dict: The dict contains loaded image and meta information.
"""
if isinstance(single_input, str):
inputs = dict(img_path=single_input)
elif isinstance(single_input, np.ndarray):
inputs = dict(img=single_input)
elif isinstance(single_input, dict):
inputs = single_input
else:
raise NotImplementedError
if 'img' in inputs:
return self.from_ndarray(inputs)
return self.from_file(inputs)
|