File size: 17,166 Bytes
2ae34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, Optional, Union

import mmcv
import mmengine.fileio as fileio
import numpy as np
from mmcv.transforms import BaseTransform
from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations
from mmcv.transforms import LoadImageFromFile

from mmseg.registry import TRANSFORMS
from mmseg.utils import datafrombytes


@TRANSFORMS.register_module()
class LoadAnnotations(MMCV_LoadAnnotations):
    """Load annotations for semantic segmentation provided by dataset.

    The annotation format is as the following:

    .. code-block:: python

        {
            # Filename of semantic segmentation ground truth file.
            'seg_map_path': 'a/b/c'
        }

    After this module, the annotation has been changed to the format below:

    .. code-block:: python

        {
            # in str
            'seg_fields': List
             # In uint8 type.
            'gt_seg_map': np.ndarray (H, W)
        }

    Required Keys:

    - seg_map_path (str): Path of semantic segmentation ground truth file.

    Added Keys:

    - seg_fields (List)
    - gt_seg_map (np.uint8)

    Args:
        reduce_zero_label (bool, optional): Whether reduce all label value
            by 1. Usually used for datasets where 0 is background label.
            Defaults to None.
        imdecode_backend (str): The image decoding backend type. The backend
            argument for :func:``mmcv.imfrombytes``.
            See :fun:``mmcv.imfrombytes`` for details.
            Defaults to 'pillow'.
        backend_args (dict): Arguments to instantiate a file backend.
            See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
            for details. Defaults to None.
            Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
    """

    def __init__(
        self,
        label_id_map={},
        reduce_zero_label=None,
        backend_args=None,
        imdecode_backend='pillow',
    ) -> None:
        super().__init__(
            with_bbox=False,
            with_label=False,
            with_seg=True,
            with_keypoints=False,
            imdecode_backend=imdecode_backend,
            backend_args=backend_args)
        self.label_id_map = label_id_map
        self.reduce_zero_label = reduce_zero_label
        if self.reduce_zero_label is not None:
            warnings.warn('`reduce_zero_label` will be deprecated, '
                          'if you would like to ignore the zero label, please '
                          'set `reduce_zero_label=True` when dataset '
                          'initialized')
        self.imdecode_backend = imdecode_backend

    def _load_seg_map(self, results: dict) -> None:
        """Private function to load semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:``mmcv.BaseDataset``.

        Returns:
            dict: The dict contains loaded semantic segmentation annotations.
        """
        img_bytes = fileio.get(
            results['seg_map_path'], backend_args=self.backend_args)
        gt_semantic_seg = mmcv.imfrombytes(
            img_bytes, flag='unchanged',
            backend=self.imdecode_backend).squeeze().astype(np.uint8)

        if np.any(gt_semantic_seg > 1):
            raise ValueError('gt_semantic_seg should not contain value 255.')

        for ori_id, new_id in self.label_id_map.items():
            gt_semantic_seg[gt_semantic_seg == int(ori_id)] = new_id

        # reduce zero_label
        if self.reduce_zero_label is None:
            self.reduce_zero_label = results['reduce_zero_label']
        assert self.reduce_zero_label == results['reduce_zero_label'], \
            'Initialize dataset with `reduce_zero_label` as ' \
            f'{results["reduce_zero_label"]} but when load annotation ' \
            f'the `reduce_zero_label` is {self.reduce_zero_label}'
        if self.reduce_zero_label:
            # avoid using underflow conversion
            gt_semantic_seg[gt_semantic_seg == 0] = 255
            gt_semantic_seg = gt_semantic_seg - 1
            gt_semantic_seg[gt_semantic_seg == 254] = 255
        # modify if custom classes
        if results.get('label_map', None) is not None:
            # Add deep copy to solve bug of repeatedly
            # replace `gt_semantic_seg`, which is reported in
            # https://github.com/open-mmlab/mmsegmentation/pull/1445/
            gt_semantic_seg_copy = gt_semantic_seg.copy()
            for old_id, new_id in results['label_map'].items():
                gt_semantic_seg[gt_semantic_seg_copy == old_id] = new_id
        results['gt_seg_map'] = gt_semantic_seg
        results['seg_fields'].append('gt_seg_map')

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(reduce_zero_label={self.reduce_zero_label}, '
        repr_str += f"imdecode_backend='{self.imdecode_backend}', "
        repr_str += f'backend_args={self.backend_args})'
        return repr_str


@TRANSFORMS.register_module()
class LoadImageFromNDArray(LoadImageFromFile):
    """Load an image from ``results['img']``.

    Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
    :obj:`np.ndarray` in ``results['img']``. Can be used when loading image
    from webcam.

    Required Keys:

    - img

    Modified Keys:

    - img
    - img_path
    - img_shape
    - ori_shape

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
    """

    def transform(self, results: dict) -> dict:
        """Transform function to add image meta information.

        Args:
            results (dict): Result dict with Webcam read image in
                ``results['img']``.

        Returns:
            dict: The dict contains loaded image and meta information.
        """

        img = results['img']
        if self.to_float32:
            img = img.astype(np.float32)

        results['img_path'] = None
        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['ori_shape'] = img.shape[:2]
        return results


@TRANSFORMS.register_module()
class LoadBiomedicalImageFromFile(BaseTransform):
    """Load an biomedical mage from file.

    Required Keys:

    - img_path

    Added Keys:

    - img (np.ndarray): Biomedical image with shape (N, Z, Y, X) by default,
        N is the number of modalities, and data type is float32
        if set to_float32 = True, or float64 if decode_backend is 'nifti' and
        to_float32 is False.
    - img_shape
    - ori_shape

    Args:
        decode_backend (str): The data decoding backend type. Options are
            'numpy'and 'nifti', and there is a convention that when backend is
            'nifti' the axis of data loaded is XYZ, and when backend is
            'numpy', the the axis is ZYX. The data will be transposed if the
            backend is 'nifti'. Defaults to 'nifti'.
        to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
            Defaults to False.
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an float64 array.
            Defaults to True.
        backend_args (dict, Optional): Arguments to instantiate a file backend.
            See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
            for details. Defaults to None.
            Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
    """

    def __init__(self,
                 decode_backend: str = 'nifti',
                 to_xyz: bool = False,
                 to_float32: bool = True,
                 backend_args: Optional[dict] = None) -> None:
        self.decode_backend = decode_backend
        self.to_xyz = to_xyz
        self.to_float32 = to_float32
        self.backend_args = backend_args.copy() if backend_args else None

    def transform(self, results: Dict) -> Dict:
        """Functions to load image.

        Args:
            results (dict): Result dict from :obj:``mmcv.BaseDataset``.

        Returns:
            dict: The dict contains loaded image and meta information.
        """

        filename = results['img_path']

        data_bytes = fileio.get(filename, self.backend_args)
        img = datafrombytes(data_bytes, backend=self.decode_backend)

        if self.to_float32:
            img = img.astype(np.float32)

        if len(img.shape) == 3:
            img = img[None, ...]

        if self.decode_backend == 'nifti':
            img = img.transpose(0, 3, 2, 1)

        if self.to_xyz:
            img = img.transpose(0, 3, 2, 1)

        results['img'] = img
        results['img_shape'] = img.shape[1:]
        results['ori_shape'] = img.shape[1:]
        return results

    def __repr__(self):
        repr_str = (f'{self.__class__.__name__}('
                    f"decode_backend='{self.decode_backend}', "
                    f'to_xyz={self.to_xyz}, '
                    f'to_float32={self.to_float32}, '
                    f'backend_args={self.backend_args})')
        return repr_str


@TRANSFORMS.register_module()
class LoadBiomedicalAnnotation(BaseTransform):
    """Load ``seg_map`` annotation provided by biomedical dataset.

    The annotation format is as the following:

    .. code-block:: python

        {
            'gt_seg_map': np.ndarray (X, Y, Z) or (Z, Y, X)
        }

    Required Keys:

    - seg_map_path

    Added Keys:

    - gt_seg_map (np.ndarray): Biomedical seg map with shape (Z, Y, X) by
        default, and data type is float32 if set to_float32 = True, or
        float64 if decode_backend is 'nifti' and to_float32 is False.

    Args:
        decode_backend (str): The data decoding backend type. Options are
            'numpy'and 'nifti', and there is a convention that when backend is
            'nifti' the axis of data loaded is XYZ, and when backend is
            'numpy', the the axis is ZYX. The data will be transposed if the
            backend is 'nifti'. Defaults to 'nifti'.
        to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
            Defaults to False.
        to_float32 (bool): Whether to convert the loaded seg map to a float32
            numpy array. If set to False, the loaded image is an float64 array.
            Defaults to True.
        backend_args (dict, Optional): Arguments to instantiate a file backend.
            See :class:`mmengine.fileio` for details.
            Defaults to None.
            Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
    """

    def __init__(self,
                 decode_backend: str = 'nifti',
                 to_xyz: bool = False,
                 to_float32: bool = True,
                 backend_args: Optional[dict] = None) -> None:
        super().__init__()
        self.decode_backend = decode_backend
        self.to_xyz = to_xyz
        self.to_float32 = to_float32
        self.backend_args = backend_args.copy() if backend_args else None

    def transform(self, results: Dict) -> Dict:
        """Functions to load image.

        Args:
            results (dict): Result dict from :obj:``mmcv.BaseDataset``.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        data_bytes = fileio.get(results['seg_map_path'], self.backend_args)
        gt_seg_map = datafrombytes(data_bytes, backend=self.decode_backend)

        if self.to_float32:
            gt_seg_map = gt_seg_map.astype(np.float32)

        if self.decode_backend == 'nifti':
            gt_seg_map = gt_seg_map.transpose(2, 1, 0)

        if self.to_xyz:
            gt_seg_map = gt_seg_map.transpose(2, 1, 0)

        results['gt_seg_map'] = gt_seg_map
        return results

    def __repr__(self):
        repr_str = (f'{self.__class__.__name__}('
                    f"decode_backend='{self.decode_backend}', "
                    f'to_xyz={self.to_xyz}, '
                    f'to_float32={self.to_float32}, '
                    f'backend_args={self.backend_args})')
        return repr_str


@TRANSFORMS.register_module()
class LoadBiomedicalData(BaseTransform):
    """Load an biomedical image and annotation from file.

    The loading data format is as the following:

    .. code-block:: python

        {
            'img': np.ndarray data[:-1, X, Y, Z]
            'seg_map': np.ndarray data[-1, X, Y, Z]
        }


    Required Keys:

    - img_path

    Added Keys:

    - img (np.ndarray): Biomedical image with shape (N, Z, Y, X) by default,
        N is the number of modalities.
    - gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
        (Z, Y, X) by default.
    - img_shape
    - ori_shape

    Args:
        with_seg (bool): Whether to parse and load the semantic segmentation
            annotation. Defaults to False.
        decode_backend (str): The data decoding backend type. Options are
            'numpy'and 'nifti', and there is a convention that when backend is
            'nifti' the axis of data loaded is XYZ, and when backend is
            'numpy', the the axis is ZYX. The data will be transposed if the
            backend is 'nifti'. Defaults to 'nifti'.
        to_xyz (bool): Whether transpose data from Z, Y, X to X, Y, Z.
            Defaults to False.
        backend_args (dict, Optional): Arguments to instantiate a file backend.
            See https://mmengine.readthedocs.io/en/latest/api/fileio.htm
            for details. Defaults to None.
            Notes: mmcv>=2.0.0rc4, mmengine>=0.2.0 required.
    """

    def __init__(self,
                 with_seg=False,
                 decode_backend: str = 'numpy',
                 to_xyz: bool = False,
                 backend_args: Optional[dict] = None) -> None:  # noqa
        self.with_seg = with_seg
        self.decode_backend = decode_backend
        self.to_xyz = to_xyz
        self.backend_args = backend_args.copy() if backend_args else None

    def transform(self, results: Dict) -> Dict:
        """Functions to load image.

        Args:
            results (dict): Result dict from :obj:``mmcv.BaseDataset``.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        data_bytes = fileio.get(results['img_path'], self.backend_args)
        data = datafrombytes(data_bytes, backend=self.decode_backend)
        # img is 4D data (N, X, Y, Z), N is the number of protocol
        img = data[:-1, :]

        if self.decode_backend == 'nifti':
            img = img.transpose(0, 3, 2, 1)

        if self.to_xyz:
            img = img.transpose(0, 3, 2, 1)

        results['img'] = img
        results['img_shape'] = img.shape[1:]
        results['ori_shape'] = img.shape[1:]

        if self.with_seg:
            gt_seg_map = data[-1, :]
            if self.decode_backend == 'nifti':
                gt_seg_map = gt_seg_map.transpose(2, 1, 0)

            if self.to_xyz:
                gt_seg_map = gt_seg_map.transpose(2, 1, 0)
            results['gt_seg_map'] = gt_seg_map
        return results

    def __repr__(self) -> str:
        repr_str = (f'{self.__class__.__name__}('
                    f'with_seg={self.with_seg}, '
                    f"decode_backend='{self.decode_backend}', "
                    f'to_xyz={self.to_xyz}, '
                    f'backend_args={self.backend_args})')
        return repr_str


@TRANSFORMS.register_module()
class InferencerLoader(BaseTransform):
    """Load an image from ``results['img']``.

    Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
    :obj:`np.ndarray` in ``results['img']``. Can be used when loading image
    from webcam.

    Required Keys:

    - img

    Modified Keys:

    - img
    - img_path
    - img_shape
    - ori_shape

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
    """

    def __init__(self, **kwargs) -> None:
        super().__init__()
        self.from_file = TRANSFORMS.build(
            dict(type='LoadImageFromFile', **kwargs))
        self.from_ndarray = TRANSFORMS.build(
            dict(type='LoadImageFromNDArray', **kwargs))

    def transform(self, single_input: Union[str, np.ndarray, dict]) -> dict:
        """Transform function to add image meta information.

        Args:
            results (dict): Result dict with Webcam read image in
                ``results['img']``.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        if isinstance(single_input, str):
            inputs = dict(img_path=single_input)
        elif isinstance(single_input, np.ndarray):
            inputs = dict(img=single_input)
        elif isinstance(single_input, dict):
            inputs = single_input
        else:
            raise NotImplementedError

        if 'img' in inputs:
            return self.from_ndarray(inputs)
        return self.from_file(inputs)