Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
import torch | |
import transformers | |
def get_model(): | |
model = transformers.AutoModelForSequenceClassification.from_pretrained("Kwasiasomani/Finetuned-Distilbert-base-model") | |
tokenizer = transformers.AutoTokenizer.from_pretrained("Kwasiasomani/Finetuned-Distilbert-base-model") | |
return tokenizer,model | |
tokenizer, model = get_model() | |
button = st.button('analyze') | |
user_input = st.text_area(''' | |
How Positive or Negative is your Text?,Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!''') | |
# Define the Helper function | |
label = { | |
0: 'Negative', | |
1: 'Neutral', | |
2: 'Positive' | |
} | |
if user_input and button: | |
test_input = tokenizer([user_input],return_tensors='pt') | |
# Test output | |
output = model(**test_input) | |
st.write('Logits:',output.logits) | |
predicted_class = np.argmax(output.logits.detach().numpy()) | |
st.write('prediction:',label[predicted_class[0]]) |