Kwasiasomani's picture
Create app.py
5330a3b
raw
history blame
1.02 kB
import streamlit as st
import numpy as np
import torch
import transformers
@st.cache_resource
def get_model():
model = transformers.AutoModelForSequenceClassification.from_pretrained("Kwasiasomani/Finetuned-Distilbert-base-model")
tokenizer = transformers.AutoTokenizer.from_pretrained("Kwasiasomani/Finetuned-Distilbert-base-model")
return tokenizer,model
tokenizer, model = get_model()
button = st.button('analyze')
user_input = st.text_area('''
How Positive or Negative is your Text?,Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment!''')
# Define the Helper function
label = {
0: 'Negative',
1: 'Neutral',
2: 'Positive'
}
if user_input and button:
test_input = tokenizer([user_input],return_tensors='pt')
# Test output
output = model(**test_input)
st.write('Logits:',output.logits)
predicted_class = np.argmax(output.logits.detach().numpy())
st.write('prediction:',label[predicted_class[0]])