from googletrans import Translator import spacy import gradio as gr import nltk from nltk.corpus import wordnet import wikipedia import re import time import random import os import zipfile import ffmpeg from gtts import gTTS #from io import BytesIO from collections import Counter from PIL import Image, ImageDraw, ImageFont import numpy as np nltk.download('maxent_ne_chunker') #Chunker nltk.download('stopwords') #Stop Words List (Mainly Roman Languages) nltk.download('words') #200 000+ Alphabetical order list nltk.download('punkt') #Tokenizer nltk.download('verbnet') #For Description of Verbs nltk.download('omw') nltk.download('omw-1.4') #Multilingual Wordnet nltk.download('wordnet') #For Definitions, Antonyms and Synonyms nltk.download('shakespeare') nltk.download('dolch') #Sight words nltk.download('names') #People Names NER nltk.download('gazetteers') #Location NER nltk.download('opinion_lexicon') #Sentiment words nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging spacy.cli.download("en_core_web_sm") nlp = spacy.load('en_core_web_sm') translator = Translator() def Sentencechunker(sentence): Sentchunks = sentence.split(" ") chunks = [] for i in range(len(Sentchunks)): chunks.append(" ".join(Sentchunks[:i+1])) return " | ".join(chunks) def ReverseSentenceChunker(sentence): reversed_sentence = " ".join(reversed(sentence.split())) chunks = Sentencechunker(reversed_sentence) return chunks def three_words_chunk(sentence): words = sentence.split() chunks = [words[i:i+3] for i in range(len(words)-2)] chunks = [" ".join(chunk) for chunk in chunks] return " | ".join(chunks) def keep_nouns_verbs(sentence): doc = nlp(sentence) nouns_verbs = [] for token in doc: if token.pos_ in ['NOUN','VERB','PUNCT']: nouns_verbs.append(token.text) return " ".join(nouns_verbs) def unique_word_count(text="", state=None): if state is None: state = {} words = text.split() word_counts = state for word in words: if word in word_counts: word_counts[word] += 1 else: word_counts[word] = 1 sorted_word_counts = sorted(word_counts.items(), key=lambda x: x[1], reverse=True) return sorted_word_counts, def Wordchunker(word): chunks = [] for i in range(len(word)): chunks.append(word[:i+1]) return chunks def BatchWordChunk(sentence): words = sentence.split(" ") FinalOutput = "" Currentchunks = "" ChunksasString = "" for word in words: ChunksasString = "" Currentchunks = Wordchunker(word) for chunk in Currentchunks: ChunksasString += chunk + " " FinalOutput += "\n" + ChunksasString return FinalOutput # Translate from English to French langdest = gr.Dropdown(choices=["af", "de", "es", "ko", "ja", "zh-cn"], label="Choose Language", value="de") ChunkModeDrop = gr.Dropdown(choices=["Chunks", "Reverse", "Three Word Chunks", "Spelling Chunks"], label="Choose Chunk Type", value="Chunks") def FrontRevSentChunk (Chunkmode, Translate, Text, langdest): FinalOutput = "" TransFinalOutput = "" if Chunkmode=="Chunks": FinalOutput += Sentencechunker(Text) if Chunkmode=="Reverse": FinalOutput += ReverseSentenceChunker(Text) if Chunkmode=="Three Word Chunks": FinalOutput += three_words_chunk(Text) if Chunkmode=="Spelling Chunks": FinalOutput += BatchWordChunk(Text) if Translate: TransFinalOutput = FinalOutput translated = translator.translate(TransFinalOutput, dest=langdest) FinalOutput += "\n" + translated.text return FinalOutput # Define a function to filter out non-verb, noun, or adjective words def filter_words(words): # Use NLTK to tag each word with its part of speech tagged_words = nltk.pos_tag(words) # Define a set of parts of speech to keep (verbs, nouns, adjectives) keep_pos = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS'} # Filter the list to only include words with the desired parts of speech filtered_words = [word for word, pos in tagged_words if pos in keep_pos] return filtered_words def SepHypandSynExpansion(text): # Tokenize the text tokens = nltk.word_tokenize(text) NoHits = "" FinalOutput = "" # Find synonyms and hypernyms of each word in the text for token in tokens: synonyms = [] hypernyms = [] for synset in wordnet.synsets(token): synonyms += synset.lemma_names() hypernyms += [hypernym.name() for hypernym in synset.hypernyms()] if not synonyms and not hypernyms: NoHits += f"{token} | " else: FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms} \n" NoHits = set(NoHits.split(" | ")) NoHits = filter_words(NoHits) NoHits = "Words to pay special attention to: \n" + str(NoHits) return NoHits, FinalOutput def WikiSearch(term): termtoks = term.split(" ") for item in termtoks: # Search for the term on Wikipedia and get the first result result = wikipedia.search(item, results=20) return result def create_dictionary(word_list, word_dict = {}): word_list = set(word_list.split(" ")) for word in word_list: key = word[:2] if key not in word_dict: word_dict[key] = [word] else: word_dict[key].append(word) return word_dict def merge_lines(roman_file, w4w_file, full_mean_file, macaronic_file): files = [roman_file, w4w_file, full_mean_file, macaronic_file] merged_lines = [] with open(roman_file.name, "r") as f1, open(w4w_file.name, "r") as f2, \ open(full_mean_file.name, "r") as f3, open(macaronic_file.name, "r") as f4: for lines in zip(f1, f2, f3, f4): merged_line = "\n".join(line.strip() for line in lines) merged_lines.append(merged_line) return "\n".join(merged_lines) def TTSforListeningPractice(text): language = "en" speech = gTTS(text=text, lang=language, slow="False") speech.save("CurrentTTSFile.mp3") #file = BytesIO() #speech.write_to_fp(file) #file.seek(0) return "CurrentTTSFile.mp3" #file def AutoChorusInvestigator(sentences): sentences = sentences.splitlines() # Use Counter to count the number of occurrences of each sentence sentence_counts = Counter(sentences) # Identify duplicate sentences duplicates = [s for s, count in sentence_counts.items() if count > 1] FinalOutput = "" if len(duplicates) == 0: FinalOutput += "No duplicate sentences found in the file." else: FinalOutput += "The following sentences appear more than once in the file:" for sentence in duplicates: FinalOutput += "\n" + sentence return FinalOutput def AutoChorusPerWordScheduler(sentences): words = set(sentences.split(" ")) wordsoneattime =[] practicestring = "" FinalOutput = "This is supposed to output the words in repetition format (i.e. schedule for repitition) \nCurrent Idea = 1 new word every min and 1 old word every second" + "\n\nWords: \n" for word in words: wordsoneattime.append(word) for i in range(0, 59): practicestring += word + " " practicestring += random.choice(wordsoneattime) + " " FinalOutput += word + "\n " practicestring += "\n" FinalOutput += practicestring return FinalOutput def group_words(inlist): inlisttoks = inlist.split(" ") inlistset = set(inlisttoks) word_groups = [] current_group = [] for word in inlisttoks: current_group.append(word) if len(current_group) == 10: word_groups.append(current_group) current_group = [] if current_group: word_groups.append(current_group) current_group_index = 0 current_group_time = 0 while True: if current_group_time == 60: current_group_index = (current_group_index + 1) % len(word_groups) current_group_time = 0 else: if current_group_time % 10 == 0: random.shuffle(word_groups[current_group_index]) current_group_time += 10 yield " ".join(word_groups[current_group_index]) time.sleep(10) def split_verbs_nouns(text): nlp = spacy.load("en_core_web_sm") doc = nlp(text) verbs_nouns = [] other_words = [] pos_string = [] for token in doc: if token.pos_ in ["VERB", "NOUN"]: verbs_nouns.append(token.text) elif token.text in [punct.text for punct in doc if punct.is_punct]: verbs_nouns.append(token.text) other_words.append(token.text) else: other_words.append(token.text) pos_string.append(token.pos_) verbs_nouns_text = " ".join(verbs_nouns) other_words_text = " ".join(other_words) pos_string_text = " ".join(pos_string) return pos_string_text, verbs_nouns_text, other_words_text def split_srt_file(text): #file_path): # Open the SRT file and read its contents #with open(file_path, 'r') as f: # srt_contents = f.read() srt_contents = text # Split the SRT file by timestamp srt_sections = srt_contents.split('\n\n') # Loop through each section of the SRT file for i in range(len(srt_sections)): # Split the section into its timestamp and subtitle text section_lines = srt_sections[i].split('\n') timestamp = section_lines[1] subtitle_text = ' | '.join(section_lines[2:]) # Replace spaces in the subtitle text with " | " subtitle_text = subtitle_text.replace(' ', ' | ') # Reconstruct the section with the updated subtitle text srt_sections[i] = f"{section_lines[0]}\n{timestamp}\n{subtitle_text[3:]}" # Join the SRT sections back together into a single string return '\n\n'.join(srt_sections) def find_string_positions(s, string): positions = [] start = 0 while True: position = s.find(string, start) if position == -1: break positions.append(position) start = position + len(string) return positions def splittext(string): split_positions = find_string_positions(string, " --> ") split_strings = [] prepos = 0 for pos in split_positions: pos -= 12 split_strings.append((string[prepos:pos])) #, string[pos:])) prepos = pos FinalOutput = "" stoutput = "" linenumber = 1 print(linenumber) for item in split_strings[1:]: stoutput = item[0:29] + "\n" + item[30:] stspaces = find_string_positions(stoutput, " ") FinalOutput += str(linenumber) + "\n" + stoutput[:stspaces[-2]] + "\n" FinalOutput += "\n" linenumber += 1 return FinalOutput[2:] def VideotoSegment(video_file, subtitle_file): # Read the subtitle file and extract the timings for each subtitle timings = [] for line in subtitle_file: if '-->' in line: start, end = line.split('-->') start_time = start.strip().replace(',', '.') end_time = end.strip().replace(',', '.') timings.append((start_time, end_time)) # Cut the video into segments based on the subtitle timings video_segments = [] for i, (start_time, end_time) in enumerate(timings): output_file = f'segment_{i}.mp4' ffmpeg.input(video_file, ss=start_time, to=end_time).output(output_file, codec='copy').run() video_segments.append(output_file) # Convert each segment to an MP3 audio file using FFmpeg audio_segments = [] for i in range(len(timings)): output_file = f'segment_{i}.mp3' ffmpeg.input(video_segments[i]).output(output_file, codec='libmp3lame', qscale='4').run() audio_segments.append(output_file) # Create a ZIP archive containing all of the segmented files zip_file = zipfile.ZipFile('segmented_files.zip', 'w') for segment in video_segments + audio_segments: zip_file.write(segment) os.remove(segment) zip_file.close() # Return the ZIP archive for download return 'segmented_files.zip' def text_to_dropdown(text, id=None): #TextCompFormat lines = text.strip().split("\n") html = "{line}\n" html += " \n" return html def text_to_links(text): #TextCompFormat lines = text.strip().split("\n") html = "" for line in lines: if line.startswith("http"): html += f'{line}
\n' else: html += line + "Not a link
\n" return html HTMLCompMode = gr.Dropdown(choices=["Dropdown", "Links"], value="Dropdown") def TextCompFormat(text, HTMLCompMode): FinalOutput = "" if HTMLCompMode == "Dropdown": FinalOutput = text_to_dropdown(text) if HTMLCompMode == "Links": FinalOutput = text_to_links(text) return FinalOutput def create_collapsiblebutton(button_id, button_caption, div_content): button_html = f'' div_html = f'
\n{div_content}\n
' return button_html + "\n " + div_html #--------------- def removeTonalMarks(string): tonalMarks = "āēīōūǖáéíóúǘǎěǐǒǔǚàèìòùǜ" nonTonalMarks = "aeiouuaeiouuaeiouuaeiou" noTonalMarksStr = "" for char in string: index = tonalMarks.find(char) if index != -1: noTonalMarksStr += nonTonalMarks[index] else: noTonalMarksStr += char return noTonalMarksStr def add_text_to_image(input_image, text, output_image_path="output.png", border_size=2): imagearr = np.asarray(input_image) #Image.open(input_image_path) width, height = imagearr.shape[:2] #width, height = image.size img = Image.fromarray(imagearr) draw = ImageDraw.Draw(img) font = ImageFont.truetype("ShortBaby.ttf", 36) #ShortBaby-Mg2w.ttf text_width, text_height = draw.textbbox((0, 0), text, font=font)[2:] #draw.textsize(text, font) # calculate the x, y coordinates of the text box x = (width - text_width) / 2 y = (height - text_height) / 2 # put the text on the image with a border for dx, dy in [(0, 0), (border_size, border_size), (-border_size, -border_size), (border_size, -border_size), (-border_size, border_size)]: draw.text((x + dx, y + dy), text, font=font, fill=(255, 255, 255)) draw.text((x, y), text, font=font, fill=(0, 0, 0)) img.save(output_image_path, "PNG") return "output.png" # Define the Gradio interface inputs and outputs for video split spvvideo_file_input = gr.File(label='Video File') spvsubtitle_file_input = gr.File(label='Subtitle File') spvdownload_output = gr.File(label='Download Segmented Files') groupinput_text = gr.inputs.Textbox(lines=2, label="Enter a list of words") groupoutput_text = gr.outputs.Textbox(label="Grouped words") with gr.Blocks() as lliface: gr.HTML("

Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition)

") with gr.Tab("Welcome"): gr.HTML("""

Spaces Test - Still Undercontruction

You only learn when you convert things you dont know to known --> Normally Repetition is the only reliable method for everybody

Knowledge is a Language but productive knowledge is find replace as well

LingQ is good option for per word state management

Arrows app json creator for easy knowledge graphing and spacy POS graph?

Vocab = Glossary + all non text wall(lists, diagrams, etc.)

https://huggingface.co/spaces/vumichien/whisper-speaker-diarization

In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs

ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past

Spell multiple words simultaneously for simultaneous access

""") with gr.Tab("Unique word ID - use in Infranodus"): gr.Interface(fn=unique_word_count, inputs="text", outputs="text", title="Wordcounter") gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], title="Word suggestions - Analyse the unique words in infranodus") gr.Interface(fn=WikiSearch, inputs="text", outputs="text", title="Unique word suggestions(wiki articles)") with gr.Tab("Automating related information linking"): gr.HTML("Questions - Tacking and suggesting questions to ask = new education") with gr.Tab("Timing Practice - Repitition"): gr.HTML("

Run from it, Dread it, Repitition is inevitable - Thanos

Next Milestone is Turning this interface handsfree

") with gr.Tab("Gradio Version"): gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, title="Word Grouping and Rotation", description="Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue() with gr.Tab("HTML Version"): gr.HTML("""""") with gr.Tab("Beginner - Listening and Reading"): with gr.Tab("Listening - Songs - Chorus"): gr.HTML("Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great

This is where TTS helps as you are ignoring all words except the words just before the actual
") gr.HTML("

Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise

If you know the flow of the song you can remember the spelling easier

Essentially if the sounds are repeated or long notes they are easy to remember

") gr.HTML("""
--Google Translate--
""") gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines") gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice") gr.Interface(fn=TTSforListeningPractice, inputs="text", outputs="file", title="Placeholder - paste chorus here and use TTS or make notes to save here") with gr.Tab("Reading - Caption images (SD/Dalle-E)"): gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest
") gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience
Manga with summary descriptions for the chapters = Most aligned visual to audio experience") gr.HTML(""" --Huggingface CLIP-Interrogator Space--
""") gr.Interface(fn=removeTonalMarks, inputs="text", outputs="text", description="For text with characters use this function to remove any conflicting characters (if error below)") gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt)") #with gr.Tab("Transcribe - RASMUS Whisper"): #gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles") with gr.Tab("Advanced - LingQ Addons ideas"): gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space

Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information") gr.HTML("""

For Transcripts to any video on youtube use the link below ⬇️

https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles""") #gr.HTML("

If Space not loaded its because of offline devopment errors please message for edit


") with gr.Tab("Merged Subtitles"): gr.HTML("Step 1 - Word for Word Translation Creation in both Directions (Paste Google Translation here)") gr.Interface(fn=split_srt_file, inputs="text", outputs="text", description="SRT Contents to W4W Split SRT for Google Translate") gr.HTML("Step 2 - Pronounciation (Roman) to Subtitle Format --> GTranslate returns unformatted string") gr.Interface(fn=splittext, inputs="text", outputs="text", description="Text for w4w creation in G Translate") gr.HTML("Step 3 - Merge into one file") with gr.Row(): RomanFile = gr.File(label="Paste Roman") W4WFile = gr.File(label="Paste Word 4 Word") FullMeanFile = gr.File(label="Paste Full Meaning") MacaronicFile = gr.File(label="Paste Macaronic Text") SentGramFormula = gr.File(label="Paste Sentence Grammar Formula Text") with gr.Row(): MergeButton = gr.Button() with gr.Row(): MergeOutput = gr.TextArea(label="Output") MergeButton.click(merge_lines, inputs=[RomanFile, W4WFile, FullMeanFile, MacaronicFile], outputs=[MergeOutput]) with gr.Tab("Split video to segments"): gr.Interface(VideotoSegment, inputs=[spvvideo_file_input, spvsubtitle_file_input], outputs=spvdownload_output) with gr.Tab("Sentence to Format"): gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], title="Comprehension reading and Sentence Format Creator") gr.Text("Text to Closed Class + Adjectives + Punctuation or Noun Verb + Punctuation ") with gr.Tab("Spelling and Chunks"): gr.Text("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access") gr.HTML("

Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences") with gr.Tab("Spelling Simplification - Use a dual language list"): gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters") with gr.Tab("Chunks"): gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text") gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", title="Noun and Verbs only (Plus punctuation)") with gr.Tab("Knowledge Ideas - Notetaking"): gr.HTML("""

Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them

My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient

Big Picture = Expand the Heading and the subheadings and compare them to each other

Application of Knowledge = App Version of the text (eg. Jupyter Notebooks) is what you create and learn first

""") gr.Interface(fn=TextCompFormat, inputs=["textarea", HTMLCompMode], outputs="text", description="Convert Text to HTML Dropdown or Links which you paste in any html file") gr.Interface(fn=create_collapsiblebutton, inputs=["textbox", "textbox", "textarea"], outputs="textarea", description="Button and Div HTML Generator, Generate the HTML for a button and the corresponding div element.") with gr.Tab("Automated Reading Assitant"): gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text
Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis") lliface.queue().launch()