Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Reuse the code from a working space (2/2)
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
import os
|
4 |
from glob import glob
|
@@ -11,18 +12,17 @@ from PIL import Image
|
|
11 |
|
12 |
import uuid
|
13 |
import random
|
14 |
-
import spaces
|
15 |
from huggingface_hub import hf_hub_download
|
|
|
16 |
|
17 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
18 |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
19 |
)
|
20 |
pipe.to("cuda")
|
21 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
22 |
|
23 |
max_64_bit_int = 2**63 - 1
|
24 |
|
25 |
-
@spaces.GPU(duration=
|
26 |
def sample(
|
27 |
image: Image,
|
28 |
seed: Optional[int] = 42,
|
@@ -50,7 +50,7 @@ def sample(
|
|
50 |
export_to_video(frames, video_path, fps=fps_id)
|
51 |
torch.manual_seed(seed)
|
52 |
|
53 |
-
return video_path, seed
|
54 |
|
55 |
def resize_image(image, output_size=(1024, 576)):
|
56 |
# Calculate aspect ratios
|
@@ -84,22 +84,24 @@ def resize_image(image, output_size=(1024, 576)):
|
|
84 |
return cropped_image
|
85 |
|
86 |
with gr.Blocks() as demo:
|
87 |
-
gr.Markdown('''# Stable Video Diffusion
|
|
|
88 |
''')
|
89 |
with gr.Row():
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
99 |
|
100 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
101 |
-
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
-
demo.queue(max_size=20, api_open=False)
|
105 |
demo.launch(share=True, show_api=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
#import gradio.helpers
|
3 |
import torch
|
4 |
import os
|
5 |
from glob import glob
|
|
|
12 |
|
13 |
import uuid
|
14 |
import random
|
|
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
+
import spaces
|
17 |
|
18 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
19 |
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
|
20 |
)
|
21 |
pipe.to("cuda")
|
|
|
22 |
|
23 |
max_64_bit_int = 2**63 - 1
|
24 |
|
25 |
+
@spaces.GPU(duration=120)
|
26 |
def sample(
|
27 |
image: Image,
|
28 |
seed: Optional[int] = 42,
|
|
|
50 |
export_to_video(frames, video_path, fps=fps_id)
|
51 |
torch.manual_seed(seed)
|
52 |
|
53 |
+
return video_path, frames, seed
|
54 |
|
55 |
def resize_image(image, output_size=(1024, 576)):
|
56 |
# Calculate aspect ratios
|
|
|
84 |
return cropped_image
|
85 |
|
86 |
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
|
88 |
+
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [𧨠diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
|
89 |
''')
|
90 |
with gr.Row():
|
91 |
+
with gr.Column():
|
92 |
+
image = gr.Image(label="Upload your image", type="pil")
|
93 |
+
with gr.Accordion("Advanced options", open=False):
|
94 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
95 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
96 |
+
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
97 |
+
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
|
98 |
+
generate_btn = gr.Button(value="Animate", variant="primary")
|
99 |
+
with gr.Column():
|
100 |
+
video = gr.Video(label="Generated video")
|
101 |
+
gallery = gr.Gallery(label="Generated frames")
|
102 |
|
103 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
104 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, gallery, seed], api_name="video")
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
107 |
demo.launch(share=True, show_api=False)
|