import spaces import torch import torchaudio from einops import rearrange from stable_audio_tools import get_pretrained_model from stable_audio_tools.inference.generation import generate_diffusion_cond from huggingface_hub import cached_download, hf_hub_url from transformers import AutoModelForAudioClassification import os token = os.environ.get("TOKEN") model_name = "stabilityai/stable-audio-open-1.0" model_config_url = hf_hub_url(repo_id=model_name, revision="main", filename="model_config.json") model_config = cached_download(model_config_url, use_auth_token=token) model = AutoModelForAudioClassification.from_pretrained( model_name, cache_dir=None, use_auth_token=token ) sample_rate = model_config["sample_rate"] sample_size = model_config["sample_size"] device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) # --- Gradio App --- def generate_music(prompt, seconds_total, bpm, genre): """Generates music from a prompt using Stable Diffusion.""" # Set up text and timing conditioning conditioning = [{ "prompt": f"{bpm} BPM {genre} {prompt}", "seconds_start": 0, "seconds_total": seconds_total }] # Generate stereo audio output = generate_diffusion_cond( model, steps=100, cfg_scale=7, conditioning=conditioning, sample_size=sample_size, sigma_min=0.3, sigma_max=500, sampler_type="dpmpp-3m-sde", device=device ) # Rearrange audio batch to a single sequence output = rearrange(output, "b d n -> d (b n)") # Peak normalize, clip, convert to int16, and save to file output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() return output @spaces.GPU(duration=120) def generate_music_and_save(prompt, seconds_total, bpm, genre): """Generates music, saves it to a file, and returns the file path.""" output = generate_music(prompt, seconds_total, bpm, genre) filename = "output.wav" torchaudio.save(filename, output, sample_rate) return filename # Create Gradio interface iface = spaces.Interface( generate_music_and_save, inputs=[ spaces.Textbox(label="Prompt (e.g., 'upbeat drum loop')", lines=1), spaces.Slider(label="Duration (seconds)", minimum=1, maximum=60, step=1), spaces.Slider(label="BPM", minimum=60, maximum=200, step=1), spaces.Dropdown(label="Genre", choices=["pop", "rock", "hip hop", "electronic", "classical"], value="pop") ], outputs=[ spaces.Audio(label="Generated Music") ], title="Stable Audio Open", description="Generate music from text prompts using Stable Audio." ) iface.launch(share=True)