Ed-Sheeran / app.py
Kvikontent's picture
Update app.py
67165c8 verified
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import gradio as gr
# Load pre-trained tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('huggingartists/ed-sheeran')
model = AutoModelForCausalLM.from_pretrained('huggingartists/ed-sheeran', pad_token_id=50269)
# Function to generate predictions
def ed_lyrics(prompt):
encoded_prompt = tokenizer.encode(prompt + "\n\nLyrics: ", add_special_tokens=False, return_tensors='pt').to('cpu')
output_sequences = model.generate(encoded_prompt, max_length=75+len(encoded_prompt), top_p=0.8, do_sample=True)[0].tolist()
generated_song = tokenizer.decode(output_sequences[:], clean_up_tokenization_spaces=True)
final_result = generated_song.replace('\n','\n')
return final_result
# Launch interactive web demo
title = "Ed Sheeran Lyrics Generator"
description = "This app generates song lyrics in the style of Ed Sheeran using a pre-trained language model."
iface = gr.Interface(
fn=ed_lyrics,
inputs="textbox",
outputs="html",
title=title,
description=description,
theme="soft",
examples=["You make me feel so alive", "It was just a mistake", "Let's party tonight"]
).launch()