import streamlit as st import prediction import eda # Function to display the sentiment prediction @st.cache_data def get_prediction(text): return prediction.predict_sentiment(text) # Main function for the Streamlit app def main(): st.title("Sentiment Analysis App") st.title("By Arief Kurniawan") menu = ["Home", "Sentiment Prediction", "Exploratory Data Analysis"] choice = st.sidebar.selectbox("Menu", menu) if choice == "Home": st.write(""" ## Welcome to the Sentiment Analysis App! Navigate to the menu on the left to: - Predict the sentiment of a given review text. - View exploratory data analysis visuals. """) elif choice == "Sentiment Prediction": st.write(""" ### Sentiment Prediction Enter a review text below to predict its sentiment. """) # Create a text input widget text = st.text_area("Enter the review text:") if st.button("Predict"): sentiment = get_prediction(text) st.success(f"The sentiment of the review is: **{sentiment}**") elif choice == "Exploratory Data Analysis": st.write(""" ### Exploratory Data Analysis View visualizations derived from the dataset. """) # Display wordcloud st.write("### Word Cloud for Reviews") st.pyplot(eda.visualize_wordcloud()) # Display review lengths distribution st.write("### Distribution of Review Lengths") st.pyplot(eda.plot_review_lengths()) # Display rating distribution st.write("### Rating Distribution") st.pyplot(eda.rating_distribution()) if __name__ == '__main__': main()