Spaces:
Running
Running
Commit
·
2b6c9d9
1
Parent(s):
45cb4ff
Increased Model Efficiency
Browse files- model/analyzer.py +68 -118
model/analyzer.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import torch
|
4 |
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
from typing import Dict, List, Union, Optional
|
7 |
import logging
|
8 |
import traceback
|
|
|
9 |
|
10 |
-
# Configure logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
@@ -19,63 +19,62 @@ class ContentAnalyzer:
|
|
19 |
logger.info(f"Initialized analyzer with device: {self.device}")
|
20 |
|
21 |
async def load_model(self, progress=None) -> None:
|
22 |
-
"""Load
|
23 |
try:
|
24 |
-
print("\n=== Starting Model Loading ===")
|
25 |
-
print(f"Time: {datetime.now()}")
|
26 |
-
|
27 |
if progress:
|
28 |
progress(0.1, "Loading tokenizer...")
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
32 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
33 |
use_fast=True
|
34 |
)
|
35 |
|
36 |
if progress:
|
37 |
-
progress(0.3, "Loading model...")
|
38 |
-
|
39 |
-
print(f"Loading model on {self.device}...")
|
40 |
self.model = AutoModelForCausalLM.from_pretrained(
|
41 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
42 |
-
|
43 |
device_map="auto"
|
44 |
)
|
45 |
|
46 |
if progress:
|
47 |
progress(0.5, "Model loaded successfully")
|
48 |
-
|
49 |
-
print("Model and tokenizer loaded successfully")
|
50 |
-
logger.info(f"Model loaded successfully on {self.device}")
|
51 |
except Exception as e:
|
52 |
-
logger.error(f"
|
53 |
-
print(f"\nERROR DURING MODEL LOADING: {str(e)}")
|
54 |
-
print("Stack trace:")
|
55 |
traceback.print_exc()
|
56 |
raise
|
57 |
|
58 |
-
def
|
59 |
-
"""
|
60 |
chunks = []
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return chunks
|
66 |
|
67 |
async def analyze_chunk(
|
68 |
-
self,
|
69 |
-
chunk: str,
|
70 |
-
progress: Optional[gr.Progress] = None
|
71 |
-
current_progress: float = 0,
|
72 |
-
progress_step: float = 0
|
73 |
) -> List[str]:
|
74 |
-
"""
|
75 |
-
print(f"\n--- Processing Chunk ---")
|
76 |
-
print(f"Chunk text (preview): {chunk[:50]}...")
|
77 |
-
|
78 |
-
# Comprehensive trigger categories
|
79 |
categories = [
|
80 |
"Violence", "Death", "Substance Use", "Gore",
|
81 |
"Vomit", "Sexual Content", "Sexual Abuse",
|
@@ -83,111 +82,67 @@ class ContentAnalyzer:
|
|
83 |
"Mental Health Issues"
|
84 |
]
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
{
|
91 |
-
|
92 |
-
Detailed Requirements:
|
93 |
-
1. Thoroughly examine entire text chunk
|
94 |
-
2. Identify presence of ANY of these categories
|
95 |
-
3. Provide clear, objective assessment
|
96 |
-
4. Minimal subjective interpretation
|
97 |
-
|
98 |
-
TEXT CHUNK:
|
99 |
-
{chunk}
|
100 |
-
|
101 |
-
RESPONSE FORMAT:
|
102 |
-
- List categories DEFINITIVELY present
|
103 |
-
- Brief objective justification for each
|
104 |
-
- Strict YES/NO categorization"""
|
105 |
|
106 |
try:
|
107 |
-
|
108 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
|
109 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
pad_token_id=self.tokenizer.eos_token_id
|
120 |
-
)
|
121 |
-
|
122 |
-
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
123 |
-
print("Full Model Response:", response_text)
|
124 |
-
|
125 |
-
# Parse detected triggers
|
126 |
-
detected_triggers = []
|
127 |
-
for category in categories:
|
128 |
-
if category.upper() in response_text.upper():
|
129 |
-
detected_triggers.append(category)
|
130 |
-
|
131 |
-
print(f"Detected triggers in chunk: {detected_triggers}")
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
return
|
138 |
|
139 |
except Exception as e:
|
140 |
-
logger.error(f"
|
141 |
-
print(f"Error during chunk analysis: {str(e)}")
|
142 |
-
traceback.print_exc()
|
143 |
return []
|
144 |
|
145 |
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
|
146 |
-
"""Analyze the entire script for triggers with progress updates."""
|
147 |
-
print("\n=== Starting Script Analysis ===")
|
148 |
-
print(f"Time: {datetime.now()}")
|
149 |
-
|
150 |
if not self.model or not self.tokenizer:
|
151 |
await self.load_model(progress)
|
152 |
|
153 |
-
chunks = self.
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
for chunk_idx, chunk in enumerate(chunks, 1):
|
159 |
-
chunk_triggers = await self.analyze_chunk(
|
160 |
-
chunk,
|
161 |
-
progress,
|
162 |
-
current_progress,
|
163 |
-
progress_step
|
164 |
-
)
|
165 |
-
identified_triggers.update(chunk_triggers)
|
166 |
-
|
167 |
-
if progress:
|
168 |
-
progress(0.95, "Finalizing results...")
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
173 |
|
174 |
-
return
|
175 |
|
176 |
async def analyze_content(
|
177 |
script: str,
|
178 |
progress: Optional[gr.Progress] = None
|
179 |
) -> Dict[str, Union[List[str], str]]:
|
180 |
-
"""Main analysis function for the Gradio interface."""
|
181 |
-
print("\n=== Starting Content Analysis ===")
|
182 |
-
print(f"Time: {datetime.now()}")
|
183 |
-
|
184 |
analyzer = ContentAnalyzer()
|
185 |
|
186 |
try:
|
187 |
triggers = await analyzer.analyze_script(script, progress)
|
188 |
-
|
189 |
-
if progress:
|
190 |
-
progress(1.0, "Analysis complete!")
|
191 |
|
192 |
result = {
|
193 |
"detected_triggers": triggers,
|
@@ -196,14 +151,10 @@ async def analyze_content(
|
|
196 |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
197 |
}
|
198 |
|
199 |
-
print("\nFinal Result Dictionary:", result)
|
200 |
return result
|
201 |
|
202 |
except Exception as e:
|
203 |
logger.error(f"Analysis error: {str(e)}")
|
204 |
-
print(f"\nERROR OCCURRED: {str(e)}")
|
205 |
-
print("Stack trace:")
|
206 |
-
traceback.print_exc()
|
207 |
return {
|
208 |
"detected_triggers": ["Error occurred during analysis"],
|
209 |
"confidence": "Error",
|
@@ -213,7 +164,6 @@ async def analyze_content(
|
|
213 |
}
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
-
# Gradio interface
|
217 |
iface = gr.Interface(
|
218 |
fn=analyze_content,
|
219 |
inputs=gr.Textbox(lines=8, label="Input Text"),
|
|
|
1 |
import os
|
2 |
+
import asyncio
|
3 |
import torch
|
4 |
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
from typing import Dict, List, Union, Optional
|
7 |
import logging
|
8 |
import traceback
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
10 |
|
|
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
|
|
19 |
logger.info(f"Initialized analyzer with device: {self.device}")
|
20 |
|
21 |
async def load_model(self, progress=None) -> None:
|
22 |
+
"""Load quantized model with optimized configuration."""
|
23 |
try:
|
|
|
|
|
|
|
24 |
if progress:
|
25 |
progress(0.1, "Loading tokenizer...")
|
26 |
|
27 |
+
# Quantization configuration
|
28 |
+
quantization_config = BitsAndBytesConfig(
|
29 |
+
load_in_4bit=True,
|
30 |
+
bnb_4bit_compute_dtype=torch.float16,
|
31 |
+
bnb_4bit_quant_type="nf4"
|
32 |
+
)
|
33 |
+
|
34 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
35 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
36 |
use_fast=True
|
37 |
)
|
38 |
|
39 |
if progress:
|
40 |
+
progress(0.3, "Loading quantized model...")
|
41 |
+
|
|
|
42 |
self.model = AutoModelForCausalLM.from_pretrained(
|
43 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
44 |
+
quantization_config=quantization_config,
|
45 |
device_map="auto"
|
46 |
)
|
47 |
|
48 |
if progress:
|
49 |
progress(0.5, "Model loaded successfully")
|
50 |
+
|
|
|
|
|
51 |
except Exception as e:
|
52 |
+
logger.error(f"Model loading error: {str(e)}")
|
|
|
|
|
53 |
traceback.print_exc()
|
54 |
raise
|
55 |
|
56 |
+
def _semantic_chunk_text(self, text: str, max_chunk_size: int = 4096) -> List[str]:
|
57 |
+
"""Semantic chunking with dynamic sizing."""
|
58 |
chunks = []
|
59 |
+
current_chunk = ""
|
60 |
+
for sentence in text.split('.'):
|
61 |
+
if len(current_chunk) + len(sentence) < max_chunk_size:
|
62 |
+
current_chunk += sentence + '.'
|
63 |
+
else:
|
64 |
+
chunks.append(current_chunk.strip())
|
65 |
+
current_chunk = sentence + '.'
|
66 |
+
|
67 |
+
if current_chunk:
|
68 |
+
chunks.append(current_chunk.strip())
|
69 |
+
|
70 |
return chunks
|
71 |
|
72 |
async def analyze_chunk(
|
73 |
+
self,
|
74 |
+
chunk: str,
|
75 |
+
progress: Optional[gr.Progress] = None
|
|
|
|
|
76 |
) -> List[str]:
|
77 |
+
"""Optimized single-pass chunk analysis."""
|
|
|
|
|
|
|
|
|
78 |
categories = [
|
79 |
"Violence", "Death", "Substance Use", "Gore",
|
80 |
"Vomit", "Sexual Content", "Sexual Abuse",
|
|
|
82 |
"Mental Health Issues"
|
83 |
]
|
84 |
|
85 |
+
prompt = f"""Analyze this text for sensitive content.
|
86 |
+
Categories: {', '.join(categories)}
|
87 |
+
Identify ALL present categories.
|
88 |
+
Be precise and direct.
|
89 |
+
Chunk: {chunk}
|
90 |
+
Output Format: Comma-separated category names if present."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
try:
|
93 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True)
|
|
|
94 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
95 |
|
96 |
+
outputs = self.model.generate(
|
97 |
+
**inputs,
|
98 |
+
max_new_tokens=128,
|
99 |
+
do_sample=True,
|
100 |
+
temperature=0.2,
|
101 |
+
top_p=0.9,
|
102 |
+
pad_token_id=self.tokenizer.eos_token_id
|
103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
106 |
+
|
107 |
+
# Extract detected categories
|
108 |
+
detected = [
|
109 |
+
cat for cat in categories
|
110 |
+
if cat.upper() in response.upper()
|
111 |
+
]
|
112 |
|
113 |
+
return detected
|
114 |
|
115 |
except Exception as e:
|
116 |
+
logger.error(f"Chunk analysis error: {str(e)}")
|
|
|
|
|
117 |
return []
|
118 |
|
119 |
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
|
|
|
|
|
|
|
|
|
120 |
if not self.model or not self.tokenizer:
|
121 |
await self.load_model(progress)
|
122 |
|
123 |
+
chunks = self._semantic_chunk_text(script)
|
124 |
+
|
125 |
+
# Concurrent chunk processing
|
126 |
+
tasks = [self.analyze_chunk(chunk) for chunk in chunks]
|
127 |
+
chunk_results = await asyncio.gather(*tasks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
# Flatten and deduplicate results
|
130 |
+
identified_triggers = set(
|
131 |
+
trigger
|
132 |
+
for chunk_triggers in chunk_results
|
133 |
+
for trigger in chunk_triggers
|
134 |
+
)
|
135 |
|
136 |
+
return list(identified_triggers) or ["None"]
|
137 |
|
138 |
async def analyze_content(
|
139 |
script: str,
|
140 |
progress: Optional[gr.Progress] = None
|
141 |
) -> Dict[str, Union[List[str], str]]:
|
|
|
|
|
|
|
|
|
142 |
analyzer = ContentAnalyzer()
|
143 |
|
144 |
try:
|
145 |
triggers = await analyzer.analyze_script(script, progress)
|
|
|
|
|
|
|
146 |
|
147 |
result = {
|
148 |
"detected_triggers": triggers,
|
|
|
151 |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
152 |
}
|
153 |
|
|
|
154 |
return result
|
155 |
|
156 |
except Exception as e:
|
157 |
logger.error(f"Analysis error: {str(e)}")
|
|
|
|
|
|
|
158 |
return {
|
159 |
"detected_triggers": ["Error occurred during analysis"],
|
160 |
"confidence": "Error",
|
|
|
164 |
}
|
165 |
|
166 |
if __name__ == "__main__":
|
|
|
167 |
iface = gr.Interface(
|
168 |
fn=analyze_content,
|
169 |
inputs=gr.Textbox(lines=8, label="Input Text"),
|