import gradio as gr import torch from torch import nn from torch.nn import functional as F import torchvision from torchvision import transforms model= torch.jit.load('best.pt') data_transform1=transforms.Compose([ transforms.Resize((640,640)), transforms.ToTensor(), transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225)) ]) title = " Fashion Items Classification" examples=[['https://github.com/Kr1n3/MPC_2022/blob/main/dataset/pants_33.jpg?raw=true'],['https://github.com/Kr1n3/MPC_2022/blob/main/dataset/pants_30.jpeg?raw=true'],['https://github.com/Kr1n3/MPC_2022/blob/main/dataset/bag_01.jpg?raw=true']] classes=['Bags','Dress','Pants','Shoes','Skirt'] def predict(img): imag=data_transform1(img) inp =imag.unsqueeze(0) outputs=model(inp) pred=F.softmax(outputs[0], dim=0).cpu().data.numpy() confidences = {classes[i]:(float(pred[i])) for i in range(5)} return confidences gr.Interface(predict,gr.inputs.Image(type='pil'),title=title,examples=examples,outputs='label').launch(debug=True)