File size: 11,727 Bytes
925ac7f b7fabea 54d8c8e fbdc657 925ac7f fbdc657 3433b65 68e6513 b7fabea 54d8c8e 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 54d8c8e fbdc657 925ac7f fbdc657 3433b65 fbdc657 3433b65 54d8c8e 3433b65 fbdc657 3433b65 54d8c8e fbdc657 3433b65 fbdc657 3433b65 fbdc657 3433b65 54d8c8e 3433b65 925ac7f 54d8c8e 68e6513 54d8c8e fbdc657 54d8c8e 68e6513 54d8c8e 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 fbdc657 68e6513 54d8c8e bbae640 54d8c8e 3433b65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import pandas as pd
import gradio as gr
import os
from gradio_rangeslider import RangeSlider
import math
from utils.filter_utils import filter, filter_cols
from utils.text_utils import context_markdown, parameter_markdown
# MAPS = filter_utils.LANG_MAPPING
# Main Leaderboard containing everything
text_leaderboard = pd.read_csv(os.path.join('src', 'main_df.csv'))
text = "## The range is: {min} to {max}"
# Short leaderboard containing fixed columns
short_leaderboard = filter_cols(text_leaderboard)
## Extract data
langs = []
licenses = []
ip_prices = []
op_prices = []
latencies = []
parameters = []
contexts = []
dates = []
for i in range(len(text_leaderboard)):
lang_splits = text_leaderboard.iloc[i]['Languages'].split(',')
lang_splits = [s.strip() for s in lang_splits]
langs += lang_splits
license_name = text_leaderboard.iloc[i]['License Name']
licenses.append(license_name)
ip_prices.append(text_leaderboard.iloc[i]['Input $/1M'])
op_prices.append(text_leaderboard.iloc[i]['Output $/1M'])
latencies.append(text_leaderboard.iloc[i]['Average Latency (s)'])
parameters.append(text_leaderboard.iloc[i]['Parameter Size (B)'])
contexts.append(text_leaderboard.iloc[i]['Context Size'])
dates.append(text_leaderboard.iloc[i]['Release Date'])
langs = list(set(langs))
langs.sort()
licenses = list(set(licenses))
licenses.sort()
max_input_price = max(ip_prices)
max_output_price = max(op_prices)
max_latency = max(latencies)
max_parameter = max(parameters)
max_parameter = math.ceil(math.log2(max_parameter))
max_context = max(contexts)/1024
max_context = math.ceil(math.log2(max_context))
min_date = min(dates)
max_date = max(dates)
TITLE = """<h1 align="center" id="space-title"> LLM Calculator βοΈβ‘ ππ°</h1>"""
llm_calc_app = gr.Blocks()
with llm_calc_app:
gr.HTML(TITLE)
##################################################
with gr.Row():
#####################################
# First Column
####################################
## Language Select
with gr.Column():
with gr.Row():
lang_dropdown = gr.Dropdown(
choices=langs,
value=[],
multiselect=True,
label="### Select Languages π£οΈ"
)
with gr.Row():
with gr.Column():
start_date = gr.DateTime(
value=min_date,
type="string",
label="Release Date Range π
- Start Date"
)
with gr.Column():
end_date = gr.DateTime(
value=max_date,
type="string",
label="End Date"
)
# Multiodality Select
with gr.Row():
multimodal_checkbox = gr.CheckboxGroup(
choices=['Image', 'Multi-Image', 'Audio', 'Video'],
value=[],
label="Select Additional Modalities π·π§π¬",
)
# Open/Commercial Selection
with gr.Row():
open_weight_checkbox = gr.CheckboxGroup(
choices=['Open', 'Commercial'],
value=['Open', 'Commercial'],
label="Filter by Model Type π πΌ",
)
# License selection
with gr.Row():
license_checkbox = gr.CheckboxGroup(
choices=licenses,
value=licenses,
label="License Type π‘οΈ",
)
#############################################################
# Second Column
#############################################################
with gr.Column():
####### LOG SLIDER 1 ###########
with gr.Row():
range_ = gr.Markdown("### Select Parameter Range")
with gr.Row():
parameter_slider = RangeSlider(
minimum=0,
maximum=max_parameter,
label="Parameter Range π (in Billion, log2 scale)"
)
parameter_slider.change(parameter_markdown, parameter_slider, range_,
show_progress="hide", trigger_mode="always_last")
########### LOG SLIDER 2 ################
with gr.Row():
context_range_ = gr.Markdown("### Select Context Range")
with gr.Row():
context_slider = RangeSlider(
minimum=0,
maximum=max_context,
label="Context Range π (log2 scale)"
)
context_slider.change(context_markdown, context_slider, context_range_,
show_progress="hide", trigger_mode="always_last")
########## HTML BREK LINE ###########
with gr.Row():
break_mkdn = gr.Markdown("### Select the Price range π²π‘- Value shown in $ per Million tokens")
############# PRICE SLIDER 1 ###############
with gr.Row():
input_pricing_slider = RangeSlider(
minimum=0,
maximum=max_input_price,
value=(0, max_input_price),
label="Select Price range /1M input tokens"
)
############### PRICE SLIDER 2 ###############
with gr.Row():
output_pricing_slider = RangeSlider(
minimum=0,
maximum=max_output_price,
value=(0, max_output_price),
label="Select Price range /1M output tokens"
)
with gr.Row():
"""
Main Leaderboard Row
"""
leaderboard_table = gr.Dataframe(
value=short_leaderboard,
elem_id="text-leaderboard-table",
interactive=False,
visible=True,
height=800,
datatype=['html', 'number', 'number', 'date', 'number', 'number', 'number', 'number', 'html']
)
dummy_leaderboard_table = gr.Dataframe(
value=text_leaderboard,
elem_id="dummy-leaderboard-table",
interactive=False,
visible=False
)
lang_dropdown.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
parameter_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
input_pricing_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
output_pricing_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
multimodal_checkbox.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
open_weight_checkbox.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
context_slider.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
start_date.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
end_date.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
license_checkbox.change(
filter,
[dummy_leaderboard_table, lang_dropdown, parameter_slider,
input_pricing_slider, output_pricing_slider, multimodal_checkbox,
context_slider, open_weight_checkbox, start_date, end_date, license_checkbox],
[leaderboard_table],
queue=True
)
llm_calc_app.load()
llm_calc_app.queue()
llm_calc_app.launch()
"""
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date,
parameters_estimated,parameters_actual,
open_weight,context,
additional_prices_context_caching,
additional_prices_context_storage,
additional_prices_image_input,additional_prices_image_output,additional_prices_video_input,additional_prices_video_output,additional_prices_audio_input,additional_prices_audio_output,clemscore_v1.6.5_multimodal,clemscore_v1.6.5_ascii,clemscore_v1.6,latency_v1.6,latency_v1.6.5_multimodal,latency_v1.6.5_ascii,
average_clemscore,average_latency,parameters
Final list
model_name, input_price, output_price,
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
source,licence_name,licence_url,languages,release_date, open_weight,context, average_clemscore,average_latency,parameters
Filter
multimodality_image,multimodality_multiple_image,multimodality_audio,multimodality_video,
licence_name+licence_url, languages, release_date, open_weight
RR
model_name, input_price, output_price,
source, release_date
"""
|