Spaces:
Sleeping
Sleeping
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.llms import OpenAI | |
| from langchain.chat_models import ChatOpenAI | |
| class openai_chain(): | |
| def __init__(self, inp_dir='output_reports/reports_1/faiss_index') -> None: | |
| self.inp_dir = inp_dir | |
| pass | |
| def get_response(self, query, k=3, type="map_reduce", model_name="gpt-3.5-turbo"): | |
| # Initialize OPENAI embeddings | |
| embedding = OpenAIEmbeddings() | |
| # Load Database for required PDF | |
| db = FAISS.load_local(self.inp_dir, embedding) | |
| # Get relevant docs | |
| docs = db.similarity_search(query, k=k) | |
| # Create Chain | |
| chain = load_qa_chain(ChatOpenAI(model=model_name), chain_type=type) | |
| # Get Response | |
| response = chain.run(input_documents=docs, question=query) | |
| return response | |
| def get_response_from_drive(self, query, database, k=3, type="stuff", model_name="gpt-3.5-turbo"): | |
| # Get relevant docs | |
| docs = database.similarity_search(query, k=k) | |
| # Create chain | |
| chain = load_qa_chain(ChatOpenAI(model=model_name), chain_type=type) | |
| #Get Response | |
| response = chain.run(input_documents=docs, question=query) | |
| return response |