import os os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..') import gradio as gr import matplotlib.pyplot as plt import IPython.display as ipd import os import json import math import torch from torch import nn from torch.nn import functional as F from torch.utils.data import DataLoader import logging numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) import commons import utils from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate from models import SynthesizerTrn from text.symbols import symbols from text import text_to_sequence from scipy.io.wavfile import write def get_text(text, hps): text_norm = text_to_sequence(text, hps.data.text_cleaners) if hps.data.add_blank: text_norm = commons.intersperse(text_norm, 0) text_norm = torch.LongTensor(text_norm) return text_norm hps = utils.get_hparams_from_file("configs/steins_gate_base.json") net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, **hps.model) _ = net_g.eval() _ = utils.load_checkpoint("G_265000.pth", net_g, None) def syn(content): stn_tst = get_text(content, hps) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.float().numpy() return (hps.data.sampling_rate,audio) #ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate)) app = gr.Blocks() with app: with gr.Tabs(): with gr.TabItem("Basic"): input1 = gr.Textbox() submit = gr.Button("Convert", variant="primary") output1 = gr.Audio(label="Output Audio") submit.click(syn,input1,output1) app.launch()