Spaces:
Build error
Build error
Upload train_ms.py
Browse files- train_ms.py +299 -0
train_ms.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
import itertools
|
5 |
+
import math
|
6 |
+
import torch
|
7 |
+
from torch import nn, optim
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from torch.utils.tensorboard import SummaryWriter
|
11 |
+
import torch.multiprocessing as mp
|
12 |
+
import torch.distributed as dist
|
13 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
14 |
+
from torch.cuda.amp import autocast, GradScaler
|
15 |
+
|
16 |
+
import librosa
|
17 |
+
import logging
|
18 |
+
|
19 |
+
logging.getLogger('numba').setLevel(logging.WARNING)
|
20 |
+
|
21 |
+
import commons
|
22 |
+
import utils
|
23 |
+
from data_utils import (
|
24 |
+
TextAudioSpeakerLoader,
|
25 |
+
TextAudioSpeakerCollate,
|
26 |
+
DistributedBucketSampler
|
27 |
+
)
|
28 |
+
from models import (
|
29 |
+
SynthesizerTrn,
|
30 |
+
MultiPeriodDiscriminator,
|
31 |
+
)
|
32 |
+
from losses import (
|
33 |
+
generator_loss,
|
34 |
+
discriminator_loss,
|
35 |
+
feature_loss,
|
36 |
+
kl_loss
|
37 |
+
)
|
38 |
+
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
39 |
+
from text.symbols import symbols
|
40 |
+
|
41 |
+
|
42 |
+
torch.backends.cudnn.benchmark = True
|
43 |
+
global_step = 0
|
44 |
+
|
45 |
+
|
46 |
+
def main():
|
47 |
+
"""Assume Single Node Multi GPUs Training Only"""
|
48 |
+
assert torch.cuda.is_available(), "CPU training is not allowed."
|
49 |
+
|
50 |
+
n_gpus = torch.cuda.device_count()
|
51 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
52 |
+
os.environ['MASTER_PORT'] = '80000'
|
53 |
+
|
54 |
+
hps = utils.get_hparams()
|
55 |
+
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
|
56 |
+
|
57 |
+
|
58 |
+
def run(rank, n_gpus, hps):
|
59 |
+
global global_step
|
60 |
+
if rank == 0:
|
61 |
+
logger = utils.get_logger(hps.model_dir)
|
62 |
+
logger.info(hps)
|
63 |
+
utils.check_git_hash(hps.model_dir)
|
64 |
+
writer = SummaryWriter(log_dir=hps.model_dir)
|
65 |
+
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
66 |
+
|
67 |
+
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
|
68 |
+
torch.manual_seed(hps.train.seed)
|
69 |
+
torch.cuda.set_device(rank)
|
70 |
+
|
71 |
+
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
72 |
+
train_sampler = DistributedBucketSampler(
|
73 |
+
train_dataset,
|
74 |
+
hps.train.batch_size,
|
75 |
+
[32,300,400,500,600,700,800,900,1000],
|
76 |
+
num_replicas=n_gpus,
|
77 |
+
rank=rank,
|
78 |
+
shuffle=True)
|
79 |
+
collate_fn = TextAudioSpeakerCollate()
|
80 |
+
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
|
81 |
+
collate_fn=collate_fn, batch_sampler=train_sampler)
|
82 |
+
if rank == 0:
|
83 |
+
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
84 |
+
eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
|
85 |
+
batch_size=hps.train.batch_size, pin_memory=True,
|
86 |
+
drop_last=False, collate_fn=collate_fn)
|
87 |
+
|
88 |
+
net_g = SynthesizerTrn(
|
89 |
+
len(symbols),
|
90 |
+
hps.data.filter_length // 2 + 1,
|
91 |
+
hps.train.segment_size // hps.data.hop_length,
|
92 |
+
n_speakers=hps.data.n_speakers,
|
93 |
+
**hps.model).cuda(rank)
|
94 |
+
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
95 |
+
optim_g = torch.optim.AdamW(
|
96 |
+
net_g.parameters(),
|
97 |
+
hps.train.learning_rate,
|
98 |
+
betas=hps.train.betas,
|
99 |
+
eps=hps.train.eps)
|
100 |
+
optim_d = torch.optim.AdamW(
|
101 |
+
net_d.parameters(),
|
102 |
+
hps.train.learning_rate,
|
103 |
+
betas=hps.train.betas,
|
104 |
+
eps=hps.train.eps)
|
105 |
+
net_g = DDP(net_g, device_ids=[rank])
|
106 |
+
net_d = DDP(net_d, device_ids=[rank])
|
107 |
+
|
108 |
+
try:
|
109 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
|
110 |
+
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
|
111 |
+
global_step = (epoch_str - 1) * len(train_loader)
|
112 |
+
except:
|
113 |
+
epoch_str = 1
|
114 |
+
global_step = 0
|
115 |
+
|
116 |
+
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
|
117 |
+
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
|
118 |
+
|
119 |
+
scaler = GradScaler(enabled=hps.train.fp16_run)
|
120 |
+
|
121 |
+
for epoch in range(epoch_str, hps.train.epochs + 1):
|
122 |
+
if rank==0:
|
123 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
|
124 |
+
else:
|
125 |
+
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
|
126 |
+
scheduler_g.step()
|
127 |
+
scheduler_d.step()
|
128 |
+
|
129 |
+
|
130 |
+
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
131 |
+
net_g, net_d = nets
|
132 |
+
optim_g, optim_d = optims
|
133 |
+
scheduler_g, scheduler_d = schedulers
|
134 |
+
train_loader, eval_loader = loaders
|
135 |
+
if writers is not None:
|
136 |
+
writer, writer_eval = writers
|
137 |
+
|
138 |
+
train_loader.batch_sampler.set_epoch(epoch)
|
139 |
+
global global_step
|
140 |
+
|
141 |
+
net_g.train()
|
142 |
+
net_d.train()
|
143 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(train_loader):
|
144 |
+
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
145 |
+
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
146 |
+
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
147 |
+
speakers = speakers.cuda(rank, non_blocking=True)
|
148 |
+
|
149 |
+
with autocast(enabled=hps.train.fp16_run):
|
150 |
+
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
|
151 |
+
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
|
152 |
+
|
153 |
+
mel = spec_to_mel_torch(
|
154 |
+
spec,
|
155 |
+
hps.data.filter_length,
|
156 |
+
hps.data.n_mel_channels,
|
157 |
+
hps.data.sampling_rate,
|
158 |
+
hps.data.mel_fmin,
|
159 |
+
hps.data.mel_fmax)
|
160 |
+
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
161 |
+
y_hat_mel = mel_spectrogram_torch(
|
162 |
+
y_hat.squeeze(1),
|
163 |
+
hps.data.filter_length,
|
164 |
+
hps.data.n_mel_channels,
|
165 |
+
hps.data.sampling_rate,
|
166 |
+
hps.data.hop_length,
|
167 |
+
hps.data.win_length,
|
168 |
+
hps.data.mel_fmin,
|
169 |
+
hps.data.mel_fmax
|
170 |
+
)
|
171 |
+
|
172 |
+
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
173 |
+
|
174 |
+
# Discriminator
|
175 |
+
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
176 |
+
with autocast(enabled=False):
|
177 |
+
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
178 |
+
loss_disc_all = loss_disc
|
179 |
+
optim_d.zero_grad()
|
180 |
+
scaler.scale(loss_disc_all).backward()
|
181 |
+
scaler.unscale_(optim_d)
|
182 |
+
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
183 |
+
scaler.step(optim_d)
|
184 |
+
|
185 |
+
with autocast(enabled=hps.train.fp16_run):
|
186 |
+
# Generator
|
187 |
+
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
188 |
+
with autocast(enabled=False):
|
189 |
+
loss_dur = torch.sum(l_length.float())
|
190 |
+
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
191 |
+
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
192 |
+
|
193 |
+
loss_fm = feature_loss(fmap_r, fmap_g)
|
194 |
+
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
195 |
+
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
196 |
+
optim_g.zero_grad()
|
197 |
+
scaler.scale(loss_gen_all).backward()
|
198 |
+
scaler.unscale_(optim_g)
|
199 |
+
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
200 |
+
scaler.step(optim_g)
|
201 |
+
scaler.update()
|
202 |
+
|
203 |
+
if rank==0:
|
204 |
+
if global_step % hps.train.log_interval == 0:
|
205 |
+
lr = optim_g.param_groups[0]['lr']
|
206 |
+
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
207 |
+
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
208 |
+
epoch,
|
209 |
+
100. * batch_idx / len(train_loader)))
|
210 |
+
logger.info([x.item() for x in losses] + [global_step, lr])
|
211 |
+
|
212 |
+
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
213 |
+
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
|
214 |
+
|
215 |
+
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
216 |
+
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
217 |
+
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
218 |
+
image_dict = {
|
219 |
+
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
220 |
+
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
221 |
+
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
222 |
+
"all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
|
223 |
+
}
|
224 |
+
utils.summarize(
|
225 |
+
writer=writer,
|
226 |
+
global_step=global_step,
|
227 |
+
images=image_dict,
|
228 |
+
scalars=scalar_dict)
|
229 |
+
|
230 |
+
if global_step % hps.train.eval_interval == 0:
|
231 |
+
evaluate(hps, net_g, eval_loader, writer_eval)
|
232 |
+
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
233 |
+
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
234 |
+
global_step += 1
|
235 |
+
|
236 |
+
if rank == 0:
|
237 |
+
logger.info('====> Epoch: {}'.format(epoch))
|
238 |
+
|
239 |
+
|
240 |
+
def evaluate(hps, generator, eval_loader, writer_eval):
|
241 |
+
generator.eval()
|
242 |
+
with torch.no_grad():
|
243 |
+
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
|
244 |
+
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
245 |
+
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
246 |
+
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
247 |
+
speakers = speakers.cuda(0)
|
248 |
+
|
249 |
+
# remove else
|
250 |
+
x = x[:1]
|
251 |
+
x_lengths = x_lengths[:1]
|
252 |
+
spec = spec[:1]
|
253 |
+
spec_lengths = spec_lengths[:1]
|
254 |
+
y = y[:1]
|
255 |
+
y_lengths = y_lengths[:1]
|
256 |
+
speakers = speakers[:1]
|
257 |
+
break
|
258 |
+
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, max_len=1000)
|
259 |
+
y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
|
260 |
+
|
261 |
+
mel = spec_to_mel_torch(
|
262 |
+
spec,
|
263 |
+
hps.data.filter_length,
|
264 |
+
hps.data.n_mel_channels,
|
265 |
+
hps.data.sampling_rate,
|
266 |
+
hps.data.mel_fmin,
|
267 |
+
hps.data.mel_fmax)
|
268 |
+
y_hat_mel = mel_spectrogram_torch(
|
269 |
+
y_hat.squeeze(1).float(),
|
270 |
+
hps.data.filter_length,
|
271 |
+
hps.data.n_mel_channels,
|
272 |
+
hps.data.sampling_rate,
|
273 |
+
hps.data.hop_length,
|
274 |
+
hps.data.win_length,
|
275 |
+
hps.data.mel_fmin,
|
276 |
+
hps.data.mel_fmax
|
277 |
+
)
|
278 |
+
image_dict = {
|
279 |
+
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
280 |
+
}
|
281 |
+
audio_dict = {
|
282 |
+
"gen/audio": y_hat[0,:,:y_hat_lengths[0]]
|
283 |
+
}
|
284 |
+
if global_step == 0:
|
285 |
+
image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
286 |
+
audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
|
287 |
+
|
288 |
+
utils.summarize(
|
289 |
+
writer=writer_eval,
|
290 |
+
global_step=global_step,
|
291 |
+
images=image_dict,
|
292 |
+
audios=audio_dict,
|
293 |
+
audio_sampling_rate=hps.data.sampling_rate
|
294 |
+
)
|
295 |
+
generator.train()
|
296 |
+
|
297 |
+
|
298 |
+
if __name__ == "__main__":
|
299 |
+
main()
|