Knight-coderr commited on
Commit
8220cd0
1 Parent(s): 5e95a2c

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +135 -0
  2. requirement.txt +11 -0
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from textblob import TextBlob
4
+ import joblib
5
+ import matplotlib.pyplot as plt
6
+
7
+ # Load the data
8
+ @st.cache_data
9
+ def load_data():
10
+ stock_data = pd.read_csv('data/stock_yfinance_data.csv')
11
+ tweets_data = pd.read_csv('data/stock_tweets.csv')
12
+
13
+ # Convert the Date columns to datetime
14
+ stock_data['Date'] = pd.to_datetime(stock_data['Date'])
15
+ tweets_data['Date'] = pd.to_datetime(tweets_data['Date']).dt.date
16
+
17
+ # Perform sentiment analysis on tweets
18
+ def get_sentiment(tweet):
19
+ analysis = TextBlob(tweet)
20
+ return analysis.sentiment.polarity
21
+
22
+ tweets_data['Sentiment'] = tweets_data['Tweet'].apply(get_sentiment)
23
+
24
+ # Aggregate sentiment by date and stock
25
+ daily_sentiment = tweets_data.groupby(['Date', 'Stock Name']).mean(numeric_only=True).reset_index()
26
+
27
+ # Convert the Date column in daily_sentiment to datetime64[ns]
28
+ daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
29
+
30
+ # Merge stock data with sentiment data
31
+ merged_data = pd.merge(stock_data, daily_sentiment, how='left', left_on=['Date', 'Stock Name'], right_on=['Date', 'Stock Name'])
32
+
33
+ # Fill missing sentiment values with 0 (neutral sentiment)
34
+ merged_data['Sentiment'].fillna(0, inplace=True)
35
+
36
+ # Sort the data by date
37
+ merged_data.sort_values(by='Date', inplace=True)
38
+
39
+ # Create lagged features
40
+ merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1)
41
+ merged_data['Prev_Sentiment'] = merged_data.groupby('Stock Name')['Sentiment'].shift(1)
42
+
43
+ # Create moving averages
44
+ merged_data['MA7'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).mean())
45
+ merged_data['MA14'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=14).mean())
46
+
47
+ # Create daily price changes
48
+ merged_data['Daily_Change'] = merged_data['Close'] - merged_data['Prev_Close']
49
+
50
+ # Create volatility
51
+ merged_data['Volatility'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).std())
52
+
53
+ # Drop rows with missing values
54
+ merged_data.dropna(inplace=True)
55
+
56
+ return merged_data
57
+
58
+ data = load_data()
59
+ stock_names = data['Stock Name'].unique()
60
+
61
+ # Load the best model
62
+ model_filename = 'model/best_model.pkl'
63
+ model = joblib.load(model_filename)
64
+
65
+ st.title("Stock Price Prediction Using Sentiment Analysis")
66
+
67
+ # User input for stock data
68
+ st.header("Input Stock Data")
69
+ selected_stock = st.selectbox("Select Stock Name", stock_names)
70
+ days_to_predict = st.number_input("Number of Days to Predict",
71
+ min_value=1, max_value=30, value=10)
72
+
73
+ # Get the latest data for the selected stock
74
+ latest_data = data[data['Stock Name'] == selected_stock].iloc[-1]
75
+ prev_close = latest_data['Close']
76
+ prev_sentiment = latest_data['Sentiment']
77
+ ma7 = latest_data['MA7']
78
+ ma14 = latest_data['MA14']
79
+ daily_change = latest_data['Daily_Change']
80
+ volatility = latest_data['Volatility']
81
+
82
+ # Display the latest stock data in a table
83
+ latest_data_df = pd.DataFrame({
84
+ 'Metric': ['Previous Close Price', 'Previous Sentiment', '7-day Moving Average', '14-day Moving Average', 'Daily Change', 'Volatility'],
85
+ 'Value': [prev_close, prev_sentiment, ma7, ma14, daily_change, volatility]
86
+ })
87
+
88
+ st.write("Latest Stock Data:")
89
+ st.write(latest_data_df)
90
+
91
+ st.write("Use the inputs above to predict the next days close prices of the stock.")
92
+ if st.button("Predict"):
93
+ predictions = []
94
+ latest_date = latest_data['Date']
95
+
96
+ for i in range(days_to_predict):
97
+ X_future = pd.DataFrame({
98
+ 'Prev_Close': [prev_close],
99
+ 'Prev_Sentiment': [prev_sentiment],
100
+ 'MA7': [ma7],
101
+ 'MA14': [ma14],
102
+ 'Daily_Change': [daily_change],
103
+ 'Volatility': [volatility]
104
+ })
105
+
106
+ next_day_prediction = model.predict(X_future)[0]
107
+ predictions.append(next_day_prediction)
108
+
109
+ # Update features for next prediction
110
+ prev_close = next_day_prediction
111
+ ma7 = (ma7 * 6 + next_day_prediction) / 7 # Simplified rolling calculation
112
+ ma14 = (ma14 * 13 + next_day_prediction) / 14 # Simplified rolling calculation
113
+ daily_change = next_day_prediction - prev_close
114
+
115
+ # st.write(f"Predicted next {days_to_predict} days close prices: {predictions}")
116
+ # Prepare prediction data for display
117
+ # Prepare prediction data for display
118
+ prediction_dates = pd.date_range(start=latest_date + pd.Timedelta(days=1), periods=days_to_predict)
119
+ prediction_df = pd.DataFrame({
120
+ 'Date': prediction_dates,
121
+ 'Predicted Close Price': predictions
122
+ })
123
+
124
+ st.subheader("Predicted Prices")
125
+ st.write(prediction_df)
126
+
127
+ # Plotting the results
128
+ st.subheader("Prediction Chart")
129
+ plt.figure(figsize=(10, 6))
130
+ plt.plot(prediction_df['Date'], prediction_df['Predicted Close Price'], marker='o', linestyle='--', label="Predicted Close Price")
131
+ plt.xlabel("Date")
132
+ plt.ylabel("Close Price")
133
+ plt.title(f"{selected_stock} Predicted Close Prices")
134
+ plt.legend()
135
+ st.pyplot(plt)
requirement.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.13.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.0
4
+ packaging==23.1
5
+ psutil==5.9.5
6
+ pyyaml==6.0.1
7
+ scikit-learn==1.3.2
8
+ scipy==1.11.3
9
+ joblib==1.4.2
10
+ textblob==0.7.1
11
+ boto3==1.34.144