Spaces:
Running
Running
Upload 2 files
Browse files- app.py +135 -0
- requirement.txt +11 -0
app.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from textblob import TextBlob
|
| 4 |
+
import joblib
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
# Load the data
|
| 8 |
+
@st.cache_data
|
| 9 |
+
def load_data():
|
| 10 |
+
stock_data = pd.read_csv('data/stock_yfinance_data.csv')
|
| 11 |
+
tweets_data = pd.read_csv('data/stock_tweets.csv')
|
| 12 |
+
|
| 13 |
+
# Convert the Date columns to datetime
|
| 14 |
+
stock_data['Date'] = pd.to_datetime(stock_data['Date'])
|
| 15 |
+
tweets_data['Date'] = pd.to_datetime(tweets_data['Date']).dt.date
|
| 16 |
+
|
| 17 |
+
# Perform sentiment analysis on tweets
|
| 18 |
+
def get_sentiment(tweet):
|
| 19 |
+
analysis = TextBlob(tweet)
|
| 20 |
+
return analysis.sentiment.polarity
|
| 21 |
+
|
| 22 |
+
tweets_data['Sentiment'] = tweets_data['Tweet'].apply(get_sentiment)
|
| 23 |
+
|
| 24 |
+
# Aggregate sentiment by date and stock
|
| 25 |
+
daily_sentiment = tweets_data.groupby(['Date', 'Stock Name']).mean(numeric_only=True).reset_index()
|
| 26 |
+
|
| 27 |
+
# Convert the Date column in daily_sentiment to datetime64[ns]
|
| 28 |
+
daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
|
| 29 |
+
|
| 30 |
+
# Merge stock data with sentiment data
|
| 31 |
+
merged_data = pd.merge(stock_data, daily_sentiment, how='left', left_on=['Date', 'Stock Name'], right_on=['Date', 'Stock Name'])
|
| 32 |
+
|
| 33 |
+
# Fill missing sentiment values with 0 (neutral sentiment)
|
| 34 |
+
merged_data['Sentiment'].fillna(0, inplace=True)
|
| 35 |
+
|
| 36 |
+
# Sort the data by date
|
| 37 |
+
merged_data.sort_values(by='Date', inplace=True)
|
| 38 |
+
|
| 39 |
+
# Create lagged features
|
| 40 |
+
merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1)
|
| 41 |
+
merged_data['Prev_Sentiment'] = merged_data.groupby('Stock Name')['Sentiment'].shift(1)
|
| 42 |
+
|
| 43 |
+
# Create moving averages
|
| 44 |
+
merged_data['MA7'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).mean())
|
| 45 |
+
merged_data['MA14'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=14).mean())
|
| 46 |
+
|
| 47 |
+
# Create daily price changes
|
| 48 |
+
merged_data['Daily_Change'] = merged_data['Close'] - merged_data['Prev_Close']
|
| 49 |
+
|
| 50 |
+
# Create volatility
|
| 51 |
+
merged_data['Volatility'] = merged_data.groupby('Stock Name')['Close'].transform(lambda x: x.rolling(window=7).std())
|
| 52 |
+
|
| 53 |
+
# Drop rows with missing values
|
| 54 |
+
merged_data.dropna(inplace=True)
|
| 55 |
+
|
| 56 |
+
return merged_data
|
| 57 |
+
|
| 58 |
+
data = load_data()
|
| 59 |
+
stock_names = data['Stock Name'].unique()
|
| 60 |
+
|
| 61 |
+
# Load the best model
|
| 62 |
+
model_filename = 'model/best_model.pkl'
|
| 63 |
+
model = joblib.load(model_filename)
|
| 64 |
+
|
| 65 |
+
st.title("Stock Price Prediction Using Sentiment Analysis")
|
| 66 |
+
|
| 67 |
+
# User input for stock data
|
| 68 |
+
st.header("Input Stock Data")
|
| 69 |
+
selected_stock = st.selectbox("Select Stock Name", stock_names)
|
| 70 |
+
days_to_predict = st.number_input("Number of Days to Predict",
|
| 71 |
+
min_value=1, max_value=30, value=10)
|
| 72 |
+
|
| 73 |
+
# Get the latest data for the selected stock
|
| 74 |
+
latest_data = data[data['Stock Name'] == selected_stock].iloc[-1]
|
| 75 |
+
prev_close = latest_data['Close']
|
| 76 |
+
prev_sentiment = latest_data['Sentiment']
|
| 77 |
+
ma7 = latest_data['MA7']
|
| 78 |
+
ma14 = latest_data['MA14']
|
| 79 |
+
daily_change = latest_data['Daily_Change']
|
| 80 |
+
volatility = latest_data['Volatility']
|
| 81 |
+
|
| 82 |
+
# Display the latest stock data in a table
|
| 83 |
+
latest_data_df = pd.DataFrame({
|
| 84 |
+
'Metric': ['Previous Close Price', 'Previous Sentiment', '7-day Moving Average', '14-day Moving Average', 'Daily Change', 'Volatility'],
|
| 85 |
+
'Value': [prev_close, prev_sentiment, ma7, ma14, daily_change, volatility]
|
| 86 |
+
})
|
| 87 |
+
|
| 88 |
+
st.write("Latest Stock Data:")
|
| 89 |
+
st.write(latest_data_df)
|
| 90 |
+
|
| 91 |
+
st.write("Use the inputs above to predict the next days close prices of the stock.")
|
| 92 |
+
if st.button("Predict"):
|
| 93 |
+
predictions = []
|
| 94 |
+
latest_date = latest_data['Date']
|
| 95 |
+
|
| 96 |
+
for i in range(days_to_predict):
|
| 97 |
+
X_future = pd.DataFrame({
|
| 98 |
+
'Prev_Close': [prev_close],
|
| 99 |
+
'Prev_Sentiment': [prev_sentiment],
|
| 100 |
+
'MA7': [ma7],
|
| 101 |
+
'MA14': [ma14],
|
| 102 |
+
'Daily_Change': [daily_change],
|
| 103 |
+
'Volatility': [volatility]
|
| 104 |
+
})
|
| 105 |
+
|
| 106 |
+
next_day_prediction = model.predict(X_future)[0]
|
| 107 |
+
predictions.append(next_day_prediction)
|
| 108 |
+
|
| 109 |
+
# Update features for next prediction
|
| 110 |
+
prev_close = next_day_prediction
|
| 111 |
+
ma7 = (ma7 * 6 + next_day_prediction) / 7 # Simplified rolling calculation
|
| 112 |
+
ma14 = (ma14 * 13 + next_day_prediction) / 14 # Simplified rolling calculation
|
| 113 |
+
daily_change = next_day_prediction - prev_close
|
| 114 |
+
|
| 115 |
+
# st.write(f"Predicted next {days_to_predict} days close prices: {predictions}")
|
| 116 |
+
# Prepare prediction data for display
|
| 117 |
+
# Prepare prediction data for display
|
| 118 |
+
prediction_dates = pd.date_range(start=latest_date + pd.Timedelta(days=1), periods=days_to_predict)
|
| 119 |
+
prediction_df = pd.DataFrame({
|
| 120 |
+
'Date': prediction_dates,
|
| 121 |
+
'Predicted Close Price': predictions
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
st.subheader("Predicted Prices")
|
| 125 |
+
st.write(prediction_df)
|
| 126 |
+
|
| 127 |
+
# Plotting the results
|
| 128 |
+
st.subheader("Prediction Chart")
|
| 129 |
+
plt.figure(figsize=(10, 6))
|
| 130 |
+
plt.plot(prediction_df['Date'], prediction_df['Predicted Close Price'], marker='o', linestyle='--', label="Predicted Close Price")
|
| 131 |
+
plt.xlabel("Date")
|
| 132 |
+
plt.ylabel("Close Price")
|
| 133 |
+
plt.title(f"{selected_stock} Predicted Close Prices")
|
| 134 |
+
plt.legend()
|
| 135 |
+
st.pyplot(plt)
|
requirement.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mlflow==2.13.2
|
| 2 |
+
cloudpickle==3.0.0
|
| 3 |
+
numpy==1.26.0
|
| 4 |
+
packaging==23.1
|
| 5 |
+
psutil==5.9.5
|
| 6 |
+
pyyaml==6.0.1
|
| 7 |
+
scikit-learn==1.3.2
|
| 8 |
+
scipy==1.11.3
|
| 9 |
+
joblib==1.4.2
|
| 10 |
+
textblob==0.7.1
|
| 11 |
+
boto3==1.34.144
|