import numpy as np import cv2 def crop_face(img, lmk_extractor, expand=1.5): print('****=====1======') result = lmk_extractor(img) # cv2 BGR print('****=====2======') if result is None: return None H, W, _ = img.shape lmks = result['lmks'] lmks[:, 0] *= W lmks[:, 1] *= H x_min = np.min(lmks[:, 0]) x_max = np.max(lmks[:, 0]) y_min = np.min(lmks[:, 1]) y_max = np.max(lmks[:, 1]) width = x_max - x_min height = y_max - y_min if width*height >= W*H*0.15: if W == H: return img size = min(H, W) offset = int((max(H, W) - size)/2) if size == H: return img[:, offset:-offset] else: return img[offset:-offset, :] else: center_x = x_min + width / 2 center_y = y_min + height / 2 width *= expand height *= expand size = max(width, height) x_min = int(center_x - size / 2) x_max = int(center_x + size / 2) y_min = int(center_y - size / 2) y_max = int(center_y + size / 2) top = max(0, -y_min) bottom = max(0, y_max - img.shape[0]) left = max(0, -x_min) right = max(0, x_max - img.shape[1]) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0) cropped_img = img[y_min + top:y_max + top, x_min + left:x_max + left] return cropped_img