print("Starting up. Please be patient...") import argparse import datetime import os import sys from typing import Optional import json import utils import gradio as gr import torch import yaml from common.constants import ( DEFAULT_ASSIST_TEXT_WEIGHT, DEFAULT_LENGTH, DEFAULT_LINE_SPLIT, DEFAULT_NOISE, DEFAULT_NOISEW, DEFAULT_SDP_RATIO, DEFAULT_SPLIT_INTERVAL, DEFAULT_STYLE, DEFAULT_STYLE_WEIGHT, Languages, ) from common.log import logger from common.tts_model import ModelHolder from infer import InvalidToneError from text.japanese import g2kata_tone, kata_tone2phone_tone, text_normalize is_hf_spaces = os.getenv("SYSTEM") == "spaces" limit = 150 # Get path settings with open(os.path.join("configs", "paths.yml"), "r", encoding="utf-8") as f: path_config: dict[str, str] = yaml.safe_load(f.read()) # dataset_root = path_config["dataset_root"] assets_root = path_config["assets_root"] def tts_fn( model_name, model_path, text, language, reference_audio_path, sdp_ratio, noise_scale, noise_scale_w, length_scale, line_split, split_interval, assist_text, assist_text_weight, use_assist_text, style, style_weight, kata_tone_json_str, use_tone, speaker, ): if len(text)<2: return "Please enter some text.", None, kata_tone_json_str if is_hf_spaces and len(text) > limit: return f"Too long! There is a character limit of {limit} characters.", None, kata_tone_json_str if(not model_holder.current_model): model_holder.load_model_gr(model_name, model_path) logger.info(f"Loaded model '{model_name}'") if(model_holder.current_model.model_path != model_path): model_holder.load_model_gr(model_name, model_path) logger.info(f"Swapped to model '{model_name}'") speaker_id = model_holder.current_model.spk2id[speaker] start_time = datetime.datetime.now() wrong_tone_message = "" kata_tone: Optional[list[tuple[str, int]]] = None if use_tone and kata_tone_json_str != "": if language != "JP": #logger.warning("Only Japanese is supported for tone generation.") wrong_tone_message = "アクセント指定は現在日本語のみ対応しています。" if line_split: #logger.warning("Tone generation is not supported for line split.") wrong_tone_message = ( "アクセント指定は改行で分けて生成を使わない場合のみ対応しています。" ) try: kata_tone = [] json_data = json.loads(kata_tone_json_str) # tupleを使うように変換 for kana, tone in json_data: assert isinstance(kana, str) and tone in (0, 1), f"{kana}, {tone}" kata_tone.append((kana, tone)) except Exception as e: logger.warning(f"Error occurred when parsing kana_tone_json: {e}") wrong_tone_message = f"アクセント指定が不正です: {e}" kata_tone = None # toneは実際に音声合成に代入される際のみnot Noneになる tone: Optional[list[int]] = None if kata_tone is not None: phone_tone = kata_tone2phone_tone(kata_tone) tone = [t for _, t in phone_tone] try: sr, audio = model_holder.current_model.infer( text=text, language=language, reference_audio_path=reference_audio_path, sdp_ratio=sdp_ratio, noise=noise_scale, noisew=noise_scale_w, length=length_scale, line_split=line_split, split_interval=split_interval, assist_text=assist_text, assist_text_weight=assist_text_weight, use_assist_text=use_assist_text, style=style, style_weight=style_weight, given_tone=tone, sid=speaker_id, ) except InvalidToneError as e: logger.error(f"Tone error: {e}") return f"Error: アクセント指定が不正です:\n{e}", None, kata_tone_json_str except ValueError as e: logger.error(f"Value error: {e}") return f"Error: {e}", None, kata_tone_json_str end_time = datetime.datetime.now() duration = (end_time - start_time).total_seconds() if tone is None and language == "JP": # アクセント指定に使えるようにアクセント情報を返す norm_text = text_normalize(text) kata_tone = g2kata_tone(norm_text) kata_tone_json_str = json.dumps(kata_tone, ensure_ascii=False) elif tone is None: kata_tone_json_str = "" if reference_audio_path: style="External Audio" logger.info(f"Successful inference, took {duration}s | {speaker} | {language}/{sdp_ratio}/{noise_scale}/{noise_scale_w}/{length_scale}/{style}/{style_weight} | {text}") message = f"Success, time: {duration} seconds." if wrong_tone_message != "": message = wrong_tone_message + "\n" + message return message, (sr, audio), kata_tone_json_str def load_voicedata(): print("Loading voice data...") envoices = [] jpvoices = [] styledict = {} with open("voicelist.json", "r", encoding="utf-8") as f: voc_info = json.load(f) for name, info in voc_info.items(): if not info['enable']: continue model_path = info['model_path'] model_path_full = f"{model_dir}/{model_path}/{model_path}.safetensors" if not os.path.exists(model_path_full): model_path_full = f"{model_dir}\\{model_path}\\{model_path}.safetensors" voice_name = info['title'] speakerid = info['speakerid'] datasetauthor = info['datasetauthor'] image = info['cover'] if not os.path.exists(f"images/{image}"): image="none.png" # for voices that are either known buggy or abnormal nospace=False if 'disableonspace' in info: nospace=info['disableonspace'] if not model_path in styledict.keys(): conf=f"{model_dir}/{model_path}/config.json" hps = utils.get_hparams_from_file(conf) s2id = hps.data.style2id styledict[model_path] = s2id.keys() print(f"Set up hyperparameters for model {model_path}") if(info['primarylang']=="JP"): jpvoices.append((name, model_path, model_path_full, voice_name, speakerid, datasetauthor, image, nospace)) else: envoices.append((name, model_path, model_path_full, voice_name, speakerid, datasetauthor, image, nospace)) return [envoices, jpvoices], styledict initial_text = "Hello there! This is test audio of a new Hololive text to speech tool." initial_md = """ # Hololive [Style-Bert-VITS2](https://github.com/litagin02/Style-Bert-VITS2) ### Space by [Kit Lemonfoot](https://huggingface.co/Kit-Lemonfoot)/[Noel Shirogane's High Flying Birds](https://www.youtube.com/channel/UCG9A0OJsJTluLOXfMZjJ9xA) ### Based on code originally by [fishaudio](https://github.com/fishaudio) and [litagin02](https://github.com/litagin02) Do no evil. """ style_md = """ - You can control things like voice tone, emotion, and reading style through presets or through voice files. - Neutral acts as an average across all speakers. Styling options act as an override to Neutral. - Setting the intensity too high will likely break the output. - The required intensity will depend based on the speaker and the desired style. - If you're using preexisting audio data to style the output, try to use a voice that is similar to the desired speaker. """ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--cpu", action="store_true", help="Use CPU instead of GPU") parser.add_argument( "--dir", "-d", type=str, help="Model directory", default=assets_root ) parser.add_argument( "--share", action="store_true", help="Share this app publicly", default=False ) parser.add_argument( "--server-name", type=str, default=None, help="Server name for Gradio app", ) parser.add_argument( "--no-autolaunch", action="store_true", default=False, help="Do not launch app automatically", ) args = parser.parse_args() model_dir = args.dir print(model_dir) if args.cpu: device = "cpu" else: device = "cuda" if torch.cuda.is_available() else "cpu" model_holder = ModelHolder(model_dir, device) languages = ["EN", "JP", "ZH"] langnames = ["English", "Japanese"] model_names = model_holder.model_names if len(model_names) == 0: logger.error(f"No models found. Please place the model in {model_dir}.") sys.exit(1) initial_id = 0 initial_pth_files = model_holder.model_files_dict[model_names[initial_id]] #print(initial_pth_files) voicedata, styledict = load_voicedata() #Gradio preload text_input = gr.TextArea(label="Text", value=initial_text) line_split = gr.Checkbox(label="Divide text seperately by line breaks", value=True) split_interval = gr.Slider( minimum=0.0, maximum=2, value=0.5, step=0.1, label="Length of division seperation time (in seconds)", ) language = gr.Dropdown(choices=languages, value="EN", label="Language") sdp_ratio = gr.Slider( minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio" ) noise_scale = gr.Slider( minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise" ) noise_scale_w = gr.Slider( minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise_W" ) length_scale = gr.Slider( minimum=0.1, maximum=2, value=1.0, step=0.1, label="Length" ) use_style_text = gr.Checkbox(label="Use stylization text", value=False) style_text = gr.Textbox( label="Style text", placeholder="Check the \"Use stylization text\" box to use this option!", info="The voice will be similar in tone and emotion to the text, however inflection and tempo may be worse as a result.", visible=True, ) style_text_weight = gr.Slider( minimum=0, maximum=1, value=0.7, step=0.1, label="Text stylization strength", visible=True, ) with gr.Blocks(theme=gr.themes.Base(primary_hue="emerald", secondary_hue="green"), title="Hololive Style-Bert-VITS2") as app: gr.Markdown(initial_md) #NOT USED SINCE NONE OF MY MODELS ARE JPEXTRA. #ONLY HERE FOR COMPATIBILITY WITH THE EXISTING INFER CODE. #DO NOT RENDER OR MAKE VISIBLE tone = gr.Textbox( label="Accent adjustment (0 for low, 1 for high)", info="This can only be used when not seperated by line breaks. It is not universal.", visible=False ) use_tone = gr.Checkbox(label="Use accent adjustment", value=False, visible=False) #for (name, model_path, voice_name, speakerid, datasetauthor, image) in voicedata: for vi in range(len(voicedata)): with gr.TabItem(langnames[vi]): for (name, model_path, model_path_full, voice_name, speakerid, datasetauthor, image, nospace) in voicedata[vi]: if(nospace and is_hf_spaces): continue with gr.TabItem(name): mn = gr.Textbox(value=model_path, visible=False, interactive=False) mp = gr.Textbox(value=model_path_full, visible=False, interactive=False) spk = gr.Textbox(value=speakerid, visible=False, interactive=False) with gr.Row(): with gr.Column(): gr.Markdown(f"**{voice_name}**\n\nModel name: {model_path} | Dataset author: {datasetauthor}") gr.Image(f"images/{image}", label=None, show_label=False, width=300, show_download_button=False, container=False, show_share_button=False) with gr.Column(): with gr.TabItem("Style using a preset"): style = gr.Dropdown( label="Current style (Neutral is an average style)", choices=styledict[model_path], value="Neutral", ) with gr.TabItem("Style using existing audio"): ref_audio_path = gr.Audio(label="Reference Audio", type="filepath", sources=["upload"]) style_weight = gr.Slider( minimum=0, maximum=20, value=3, step=0.1, label="Style strength", ) with gr.Column(): tts_button = gr.Button( "Synthesize", variant="primary", interactive=True ) text_output = gr.Textbox(label="Info") audio_output = gr.Audio(label="Result") tts_button.click( tts_fn, inputs=[ mn, mp, text_input, language, ref_audio_path, sdp_ratio, noise_scale, noise_scale_w, length_scale, line_split, split_interval, style_text, style_text_weight, use_style_text, style, style_weight, tone, use_tone, spk, ], outputs=[text_output, audio_output, tone], ) with gr.Row(): with gr.Column(): text_input.render() line_split.render() split_interval.render() language.render() with gr.Column(): sdp_ratio.render() noise_scale.render() noise_scale_w.render() length_scale.render() use_style_text.render() style_text.render() style_text_weight.render() with gr.Accordion("Styling Guide", open=False): gr.Markdown(style_md) app.launch(allowed_paths=['/file/images/'])