Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import json | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
def respond( | |
message, | |
history: list[tuple[str, str]]= None, | |
system_message = None, | |
): | |
task_instruction = """ | |
You are an expert in composing functions. You are given a question and a set of possible functions. | |
Based on the question, you will need to make one or more function/tool calls to achieve the purpose. | |
If none of the functions can be used, point it out and refuse to answer. | |
If the given question lacks the parameters required by the function, also point it out. | |
""".strip() | |
get_weather_api = { | |
"name": "get_weather", | |
"description": "Get the current weather for a location", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"location": { | |
"type": "string", | |
"description": "The city and state, e.g. San Francisco, New York" | |
}, | |
"unit": { | |
"type": "string", | |
"enum": ["celsius", "fahrenheit"], | |
"description": "The unit of temperature to return" | |
} | |
}, | |
"required": ["location"] | |
} | |
} | |
search_api = { | |
"name": "search", | |
"description": "Search for information on the internet", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"query": { | |
"type": "string", | |
"description": "The search query, e.g. 'latest news on AI'" | |
} | |
}, | |
"required": ["query"] | |
} | |
} | |
openai_format_tools = [get_weather_api, search_api] | |
def convert_to_xlam_tool(tools): | |
'''''' | |
if isinstance(tools, dict): | |
return { | |
"name": tools["name"], | |
"description": tools["description"], | |
"parameters": {k: v for k, v in tools["parameters"].get("properties", {}).items()} | |
} | |
elif isinstance(tools, list): | |
return [convert_to_xlam_tool(tool) for tool in tools] | |
else: | |
return tools | |
user_query = message | |
tools = openai_format_tools | |
messages = [{ | |
"role" : "system", | |
"content" : task_instruction | |
},{ | |
"role" : "user", | |
"content" : user_query | |
},{ | |
"role": "tools", | |
"content": json.dumps(convert_to_xlam_tool(tools)) | |
}] | |
model = AutoModelForCausalLM.from_pretrained("KishoreK/ActionGemma-9B", device_map="auto", use_cache=True,low_cpu_mem_usage=True ) | |
tokenizer = AutoTokenizer.from_pretrained("KishoreK/ActionGemma-9B") | |
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") | |
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) | |
return tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
fn= respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are an expert in composing functions.", label="System message"), | |
], | |
# examples=["अमेरिका के राष्ट्रपति कौन है?"], | |
description="This is ActionGemma, LAM with multi-lingual capabilities. currently this model is prompted with only 2 tools available : get_weather_api and search_api. Integrations for more api's will be coming soon." | |
) | |
if __name__ == "__main__": | |
demo.launch() |