Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -29,41 +29,47 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
29 |
pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
30 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
31 |
|
32 |
-
apply_group_offloading(
|
33 |
-
pipe.transformer,
|
34 |
-
offload_type="leaf_level",
|
35 |
-
offload_device=torch.device("cpu"),
|
36 |
-
onload_device=torch.device("cuda"),
|
37 |
-
use_stream=True,
|
38 |
-
)
|
39 |
-
apply_group_offloading(
|
40 |
-
pipe.text_encoder,
|
41 |
-
offload_device=torch.device("cpu"),
|
42 |
-
onload_device=torch.device("cuda"),
|
43 |
-
offload_type="leaf_level",
|
44 |
-
use_stream=True,
|
45 |
-
)
|
46 |
-
apply_group_offloading(
|
47 |
-
pipe.text_encoder_2,
|
48 |
-
offload_device=torch.device("cpu"),
|
49 |
-
onload_device=torch.device("cuda"),
|
50 |
-
offload_type="leaf_level",
|
51 |
-
use_stream=True,
|
52 |
-
)
|
53 |
-
apply_group_offloading(
|
54 |
-
pipe.vae,
|
55 |
-
offload_device=torch.device("cpu"),
|
56 |
-
onload_device=torch.device("cuda"),
|
57 |
-
offload_type="leaf_level",
|
58 |
-
use_stream=True,
|
59 |
-
)
|
60 |
-
|
61 |
pipe.to(device)
|
62 |
|
|
|
|
|
63 |
# --- Inference Function ---
|
64 |
@spaces.GPU
|
65 |
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
|
66 |
"""Generates an image using the FLUX pipeline with error handling."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
if pipe is None:
|
69 |
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
|
|
|
29 |
pipe = FluxWithCFGPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
30 |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
pipe.to(device)
|
33 |
|
34 |
+
group_offloading = None
|
35 |
+
|
36 |
# --- Inference Function ---
|
37 |
@spaces.GPU
|
38 |
def generate_image(prompt: str, seed: int = 42, width: int = DEFAULT_WIDTH, height: int = DEFAULT_HEIGHT, randomize_seed: bool = False, num_inference_steps: int = DEFAULT_INFERENCE_STEPS, is_enhance: bool = False):
|
39 |
"""Generates an image using the FLUX pipeline with error handling."""
|
40 |
+
|
41 |
+
global group_offloading
|
42 |
+
if not group_offloading:
|
43 |
+
apply_group_offloading(
|
44 |
+
pipe.transformer,
|
45 |
+
offload_type="leaf_level",
|
46 |
+
offload_device=torch.device("cpu"),
|
47 |
+
onload_device=torch.device("cuda"),
|
48 |
+
use_stream=True,
|
49 |
+
)
|
50 |
+
apply_group_offloading(
|
51 |
+
pipe.text_encoder,
|
52 |
+
offload_device=torch.device("cpu"),
|
53 |
+
onload_device=torch.device("cuda"),
|
54 |
+
offload_type="leaf_level",
|
55 |
+
use_stream=True,
|
56 |
+
)
|
57 |
+
apply_group_offloading(
|
58 |
+
pipe.text_encoder_2,
|
59 |
+
offload_device=torch.device("cpu"),
|
60 |
+
onload_device=torch.device("cuda"),
|
61 |
+
offload_type="leaf_level",
|
62 |
+
use_stream=True,
|
63 |
+
)
|
64 |
+
apply_group_offloading(
|
65 |
+
pipe.vae,
|
66 |
+
offload_device=torch.device("cpu"),
|
67 |
+
onload_device=torch.device("cuda"),
|
68 |
+
offload_type="leaf_level",
|
69 |
+
use_stream=True,
|
70 |
+
)
|
71 |
+
|
72 |
+
group_offloading = True
|
73 |
|
74 |
if pipe is None:
|
75 |
raise gr.Error("Diffusion pipeline failed to load. Cannot generate images.")
|