KhadgaA's picture
gradio inference
38d869c
import gradio as gr
import librosa
import pickle
import numpy as np
import spafe
from spafe.frequencies import dominant_frequencies
from spafe.features.mfcc import mfcc, imfcc
from spafe.features.bfcc import bfcc
from spafe.features.cqcc import cqcc
from spafe.features.gfcc import erb_spectrogram
from spafe.features.lfcc import linear_spectrogram
from spafe.features.msrcc import msrcc
from spafe.features.ngcc import ngcc
from spafe.utils.preprocessing import SlidingWindow
from sklearn.metrics.pairwise import cosine_similarity
def dominant_freq_density(min_dom_freq,max_dom_freq,signal,sr):
dom_f = dominant_frequencies.get_dominant_frequencies(signal,sr,nfft=512,butter_filter=True)
dom_f = dom_f[(dom_f>min_dom_freq) & (dom_f<max_dom_freq)]
h,e = np.histogram(dom_f,bins = range(min_dom_freq,max_dom_freq,100),density=True)
return h
def dominant_freq(x):
return dominant_freq_density(100,1000,x['y'],x['sr'])
def apply_mfcc(x):
return np.mean(np.nan_to_num(mfcc(x['y'],fs=x['sr'],pre_emph=1,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfilts=128,nfft=512,low_freq=50,high_freq=4000,normalize="mvn"),posinf=0,neginf=0),axis=0)
def apply_bfcc(x):
return np.mean(np.nan_to_num(bfcc(x['y'],fs=x['sr'],pre_emph=1,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfilts=128,nfft=512,low_freq=50,high_freq=4000,normalize="mvn"),posinf=0,neginf=0),axis=0)
def apply_cqcc(x):
return np.mean(np.nan_to_num(cqcc(x['y'],fs=x['sr'],pre_emph=True,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfft=512,low_freq=0,high_freq=None,number_of_octaves=7,number_of_bins_per_octave=24,spectral_threshold=0.005,f0=120,q_rate=1.0),posinf=0,neginf=0),axis=0)
def apply_gfcc(x):
return np.mean(np.nan_to_num(erb_spectrogram(x['y'],fs=x['sr'],pre_emph=True,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfilts=24,nfft=512,low_freq=0,high_freq=None,scale='constant',fbanks=None,conversion_approach='Glasberg')[0],posinf=0,neginf=0),axis=0)
def apply_lfcc(x):
return np.mean(np.nan_to_num(linear_spectrogram(x['y'],fs=x['sr'],pre_emph=True,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfilts=24,nfft=512,low_freq=0,high_freq=None,scale='constant',fbanks=None)[0],posinf=0,neginf=0),axis=0)
def apply_msrcc(x):
return np.mean(np.nan_to_num(msrcc(x['y'],fs=x['sr'],num_ceps=13,pre_emph=True,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfilts=24,nfft=512,low_freq=0,high_freq=None,scale='ascendant',gamma=-0.14285714285714285,dct_type=2,use_energy=False,lifter=None,normalize=None,fbanks=None,conversion_approach='Oshaghnessy'),posinf=0,neginf=0),axis=0)
def apply_ngcc(x):
return np.mean(np.nan_to_num(ngcc(x['y'],fs=x['sr'],num_ceps=13,pre_emph=True,pre_emph_coeff=0.97,window=SlidingWindow(0.03, 0.015, "hamming"),nfilts=24,nfft=512,low_freq=0,high_freq=None,scale='constant',dct_type=2,use_energy=False,lifter=None,normalize=None,fbanks=None,conversion_approach='Glasberg'),posinf=0,neginf=0),axis=0)
def load_model(checkpoint):
model = pickle.load(open(checkpoint, 'rb'))
return model
def extract_features(audio):
y, sr = librosa.load(audio)
features = []
dom_freq = dominant_freq({'y':y, 'sr':sr})
features.append(dom_freq)
mfcc = apply_mfcc({'y':y, 'sr':sr})
features.append(mfcc)
bfcc = apply_bfcc({'y':y, 'sr':sr})
features.append(bfcc)
cqcc = apply_cqcc({'y':y, 'sr':sr})
features.append(cqcc)
gfcc = apply_gfcc({'y':y, 'sr':sr})
features.append(gfcc)
lfcc = apply_lfcc({'y':y, 'sr':sr})
features.append(lfcc)
msrcc = apply_msrcc({'y':y, 'sr':sr})
features.append(msrcc)
ngcc = apply_ngcc({'y':y, 'sr':sr})
features.append(ngcc)
features = np.concatenate(features).flatten()
return features
def inference_Verification(audio_1, audio_2):
model = load_model('lda.pkl')
features1 = extract_features(audio_1)
features2 = extract_features(audio_2)
embed1 = model.transform([features1])
embed2 = model.transform([features2])
return cosine_similarity(embed1, embed2).flatten()[0].round(4)
audio_1 = gr.Audio(sources="upload", type="filepath", label="Audio 1")
audio_2 = gr.Audio(sources="upload", type="filepath", label="Audio 2")
text_output = gr.Textbox(label="Similarity Score")
gr.Interface(
fn=inference_Verification,
inputs=[audio_1, audio_2],
outputs=text_output,
title="Speaker Verification",
description="Speaker Verification on Multilingual dataset.",
).launch()