Keziaa commited on
Commit
25b05d6
·
1 Parent(s): 3edf68d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -16
app.py CHANGED
@@ -29,24 +29,23 @@ avg_frequency_login_days = st.number_input('Input Average Frequency Login Days :
29
  points_in_wallet = st.number_input('Input Points in Wallet : ',0.0,2069.069760814851)
30
  used_special_discount = st.radio('Used Special Discount? ',('Yes','No'))
31
  offer_application_preference = st.radio('Offer Application Preference : ',('Yes','No'))
32
- feedback = st.selectbox('Select Feedback : ','Too many ads', 'No reason specified', 'Reasonable Price',
33
  'Quality Customer Care', 'Poor Website', 'Poor Customer Service',
34
- 'Poor Product Quality', 'User Friendly Website', 'Products always in Stock')
35
 
36
  if st.button('Predict'):
37
  data_inf = pd.DataFrame({'region_category' : region_category,
38
- 'membership_category' : membership_category,
39
- 'joined_through_referral' : joined_through_referral,
40
- 'preferred_offer_types' : preferred_offer_types,
41
- 'medium_of_operation' : medium_of_operation,
42
- 'days_since_last_login' : days_since_last_login,
43
- 'avg_time_spent' : avg_time_spent,
44
- 'avg_transaction_value' : avg_transaction_value,
45
- 'avg_frequency_login_days' : avg_frequency_login_days,
46
- 'points_in_wallet' : points_in_wallet,
47
- 'used_special_discount' : used_special_discount,
48
- 'offer_application_preference' : offer_application_preference,
49
- 'feedback' : feedback
50
- })
51
- hasil = 'Not Churn' if func_imp.predict(data_inf) == 0 else 'Churn'
52
  st.header(f'Prediksi = {hasil}')
 
29
  points_in_wallet = st.number_input('Input Points in Wallet : ',0.0,2069.069760814851)
30
  used_special_discount = st.radio('Used Special Discount? ',('Yes','No'))
31
  offer_application_preference = st.radio('Offer Application Preference : ',('Yes','No'))
32
+ feedback = st.selectbox('Select Feedback : ',('Too many ads', 'No reason specified', 'Reasonable Price',
33
  'Quality Customer Care', 'Poor Website', 'Poor Customer Service',
34
+ 'Poor Product Quality', 'User Friendly Website', 'Products always in Stock'))
35
 
36
  if st.button('Predict'):
37
  data_inf = pd.DataFrame({'region_category' : region_category,
38
+ 'membership_category' : membership_category,
39
+ 'joined_through_referral' : joined_through_referral,
40
+ 'preferred_offer_types' : preferred_offer_types,
41
+ 'medium_of_operation' : medium_of_operation,
42
+ 'days_since_last_login' : days_since_last_login,
43
+ 'avg_time_spent' : avg_time_spent,
44
+ 'avg_transaction_value' : avg_transaction_value,
45
+ 'avg_frequency_login_days' : avg_frequency_login_days,
46
+ 'points_in_wallet' : points_in_wallet,
47
+ 'used_special_discount' : used_special_discount,
48
+ 'offer_application_preference' : offer_application_preference,
49
+ 'feedback' : feedback}, index=[0])
50
+ hasil = 'Not Churn' if np.round(func_imp.predict(pipeline.transform(data_inf))) == 0 else 'Churn'
 
51
  st.header(f'Prediksi = {hasil}')