import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import re import copy import secrets from pathlib import Path # Constants BOX_TAG_PATTERN = r"([\s\S]*?)" PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" # Initialize model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval() def format_text(text): """Format text for rendering in the chat UI.""" lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split("`") if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f"
" else: if i > 0: if count % 2 == 1: line = line.replace("`", r"\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
" + line text = "".join(lines) return text def get_chat_response(chatbot, task_history): """Generate a response using the model.""" chat_query = chatbot[-1][0] query = task_history[-1][0] history_cp = copy.deepcopy(task_history) full_response = "" history_filter = [] pic_idx = 1 pre = "" for i, (q, a) in enumerate(history_cp): if isinstance(q, (tuple, list)): q = f'Picture {pic_idx}: {q[0]}' pre += q + '\n' pic_idx += 1 else: pre += q history_filter.append((pre, a)) pre = "" history, message = history_filter[:-1], history_filter[-1][0] inputs = tokenizer.encode_plus(message, return_tensors='pt') outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, length_penalty=2.0, early_stopping=True) response = tokenizer.decode(outputs[0], skip_special_tokens=True) task_history.append((message, response)) chatbot.append((format_text(message), format_text(response))) return chatbot, task_history def handle_text_input(history, task_history, text): """Handle text input from the user.""" task_text = text if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION: task_text = text[:-1] history = history + [(format_text(text), None)] task_history = task_history + [(task_text, None)] return history, task_history, "" def handle_file_upload(history, task_history, file): """Handle file upload from the user.""" history = history + [((file.name,), None)] task_history = task_history + [((file.name,), None)] return history, task_history def clear_input(): """Clear the user input.""" return gr.update(value="") def clear_history(task_history): """Clear the chat history.""" task_history.clear() return [] def handle_regeneration(chatbot, task_history): """Handle the regeneration of the last response.""" print("Regenerate clicked") print("Before:", task_history, chatbot) if not task_history: return chatbot item = task_history[-1] if item[1] is None: return chatbot task_history[-1] = (item[0], None) chatbot_item = chatbot.pop(-1) if chatbot_item[0] is None: chatbot[-1] = (chatbot[-1][0], None) else: chatbot.append((chatbot_item[0], None)) print("After:", task_history, chatbot) return get_chat_response(chatbot, task_history) chatbot = [] task_history = [] def main_function(text, image): global chatbot, task_history if text: chatbot, task_history = handle_text_input(chatbot, task_history, text) if image: chatbot, task_history = handle_file_upload(chatbot, task_history, image) chatbot, task_history = get_chat_response(chatbot, task_history) formatted_response = chatbot[-1][1] # Get the latest response from the chatbot return formatted_response def clear_history_fn(): global chatbot, task_history chatbot.clear() task_history.clear() return "History cleared." # Custom CSS css = ''' .gradio-container { max-width: 800px !important; } ''' with gr.Blocks(css=css) as demo: gr.Markdown("# Qwen-VL-Chat Bot") gr.Markdown( "## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n" "Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n" "### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n" ) chat_interface = gr.Interface( fn=main_function, inputs=[ gr.components.Textbox(lines=2, label='Input'), # Update here gr.components.Image(type='filepath', label='Upload Image') # Update here ], outputs='text', live=True, layout='vertical', theme=None, css=css ).launch() gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.") demo.add_button("🧹 Clear History", clear_history_fn) demo.launch(share=True)