import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import re
import copy
import secrets
from pathlib import Path
# Constants
BOX_TAG_PATTERN = r"([\s\S]*?)"
PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval()
def format_text(text):
"""Format text for rendering in the chat UI."""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f"
"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
" + line
text = "".join(lines)
return text
def get_chat_response(chatbot, task_history):
"""Generate a response using the model."""
chat_query = chatbot[-1][0]
query = task_history[-1][0]
history_cp = copy.deepcopy(task_history)
full_response = ""
history_filter = []
pic_idx = 1
pre = ""
for i, (q, a) in enumerate(history_cp):
if isinstance(q, (tuple, list)):
q = f'Picture {pic_idx}: {q[0]}'
pre += q + '\n'
pic_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
history, message = history_filter[:-1], history_filter[-1][0]
inputs = tokenizer.encode_plus(message, return_tensors='pt')
outputs = model.generate(inputs['input_ids'], max_length=150, num_beams=4, length_penalty=2.0, early_stopping=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
task_history.append((message, response))
chatbot.append((format_text(message), format_text(response)))
return chatbot, task_history
def handle_text_input(history, task_history, text):
"""Handle text input from the user."""
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(format_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def handle_file_upload(history, task_history, file):
"""Handle file upload from the user."""
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def clear_input():
"""Clear the user input."""
return gr.update(value="")
def clear_history(task_history):
"""Clear the chat history."""
task_history.clear()
return []
def handle_regeneration(chatbot, task_history):
"""Handle the regeneration of the last response."""
print("Regenerate clicked")
print("Before:", task_history, chatbot)
if not task_history:
return chatbot
item = task_history[-1]
if item[1] is None:
return chatbot
task_history[-1] = (item[0], None)
chatbot_item = chatbot.pop(-1)
if chatbot_item[0] is None:
chatbot[-1] = (chatbot[-1][0], None)
else:
chatbot.append((chatbot_item[0], None))
print("After:", task_history, chatbot)
return get_chat_response(chatbot, task_history)
chatbot = []
task_history = []
def main_function(text, image):
global chatbot, task_history
if text:
chatbot, task_history = handle_text_input(chatbot, task_history, text)
if image:
chatbot, task_history = handle_file_upload(chatbot, task_history, image)
chatbot, task_history = get_chat_response(chatbot, task_history)
formatted_response = chatbot[-1][1] # Get the latest response from the chatbot
return formatted_response
def clear_history_fn():
global chatbot, task_history
chatbot.clear()
task_history.clear()
return "History cleared."
# Custom CSS
css = '''
.gradio-container {
max-width: 800px !important;
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# Qwen-VL-Chat Bot")
gr.Markdown(
"## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n"
"Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n"
"### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n"
)
chat_interface = gr.Interface(
fn=main_function,
inputs=[
gr.components.Textbox(lines=2, label='Input'), # Update here
gr.components.Image(type='filepath', label='Upload Image') # Update here
],
outputs='text',
live=True,
layout='vertical',
theme=None,
css=css
).launch()
gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
demo.add_button("🧹 Clear History", clear_history_fn)
demo.launch(share=True)