Spaces:
Runtime error
Runtime error
File size: 7,588 Bytes
5c6427d 75992d9 52ae6ba 75992d9 5c6427d 75992d9 5c6427d 75992d9 3d3aea0 75992d9 3d3aea0 75992d9 11df678 2f4b8e0 dfc4fa8 5c6427d c35d25e 5c6427d 2d256fb 5c6427d 2d256fb 5c6427d 2d256fb 5c6427d 2d256fb 75992d9 64f1def 0ddcdf3 a076c9d 6c1f3a1 0ddcdf3 a076c9d 6c1f3a1 0ddcdf3 a076c9d c35d25e 9f0f596 a076c9d 2d256fb a076c9d 64f1def 9f0f596 2f4b8e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import re
import copy
import secrets
from pathlib import Path
# Constants
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
# Initialize model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4", device_map="auto", trust_remote_code=True).eval()
def format_text(text):
"""Format text for rendering in the chat UI."""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def get_chat_response(chatbot, task_history):
global model, tokenizer
chat_query = chatbot[-1][0]
query = task_history[-1][0]
history_cp = copy.deepcopy(task_history)
full_response = ""
history_filter = []
pic_idx = 1
pre = ""
for i, (q, a) in enumerate(history_cp):
if isinstance(q, (tuple, list)):
q = f'Picture {pic_idx}: <img>{q[0]}</img>'
pre += q + '\n'
pic_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
temp_dir = secrets.token_hex(20)
temp_dir = Path("/tmp") / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
chatbot[-1] = (format_text(chat_query), (str(filename),)) # Hier verwenden wir format_text statt _parse_text
chat_response = response.replace("<ref>", "")
chat_response = chat_response.replace(r"</ref>", "")
chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)
if chat_response != "":
chatbot.append((None, chat_response))
else:
chatbot[-1] = (format_text(chat_query), response)
full_response = format_text(response)
task_history[-1] = (query, full_response)
return chatbot
def handle_text_input(history, task_history, text):
"""Handle text input from the user."""
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(format_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def handle_file_upload(history, task_history, file):
"""Handle file upload from the user."""
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def clear_input():
"""Clear the user input."""
return gr.update(value="")
def clear_history(task_history):
"""Clear the chat history."""
task_history.clear()
return []
def handle_regeneration(chatbot, task_history):
"""Handle the regeneration of the last response."""
print("Regenerate clicked")
print("Before:", task_history, chatbot)
if not task_history:
return chatbot
item = task_history[-1]
if item[1] is None:
return chatbot
task_history[-1] = (item[0], None)
chatbot_item = chatbot.pop(-1)
if chatbot_item[0] is None:
chatbot[-1] = (chatbot[-1][0], None)
else:
chatbot.append((chatbot_item[0], None))
print("After:", task_history, chatbot)
return get_chat_response(chatbot, task_history)
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("# Qwen-VL Multimodal-Vision-Insight")
gr.Markdown(
"## Developed by Keyvan Hardani (Keyvven on [Twitter](https://twitter.com/Keyvven))\n"
"Special thanks to [@Artificialguybr](https://twitter.com/artificialguybr) for the inspiration from his code.\n"
"### Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud\n"
)
chatbot = gr.Chatbot([("Hello", "Hi"), ("Describe the image", "I can describe images. Please upload one.")], label='Qwen-VL-Chat', elem_classes="control-height", height=520)
gr.Markdown(
"### Chat with Qwen-VL\n"
"You can ask questions or make statements in the chat input below. "
"You can also upload an image and ask questions about it like "
"'Describe this image', 'What can you see in this image?', or "
"'Explain what's happening in this image'."
)
with gr.Row(): # Erste Zeile fΓΌr Eingabefelder
with gr.Column(width=6):
query = gr.Textbox(
lines=2,
label='Chat Input',
placeholder='Type your question or statement here, or upload an image and ask about it...',
hint='E.g., "Describe this image" or "What is the capital of France?"'
)
task_history = gr.State([])
with gr.Column(width=6):
upload_btn = gr.File(label="πΌοΈ Upload", file_types=["image"], elem_classes="control-width")
with gr.Row():
with gr.Column(width=6):
submit_btn = gr.Button("π Submit", elem_classes="control-width", variant="primary")
with gr.Column(width=3):
regen_btn = gr.Button("π Regenerate", elem_classes="control-width")
with gr.Column(width=3):
clear_btn = gr.Button("π§Ή Clear History", elem_classes="control-width", variant="secondary")
gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
submit_btn.click(handle_text_input, [chatbot, task_history, query], [chatbot, task_history]).then(
get_chat_response, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(clear_input, [], [query])
clear_btn.click(clear_history, [task_history], [chatbot], show_progress=True)
regen_btn.click(handle_regeneration, [chatbot, task_history], [chatbot], show_progress=True)
upload_btn.upload(handle_file_upload, [chatbot, task_history, upload_btn], [chatbot, task_history], show_progress=True)
demo.launch()
|