import streamlit as st from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import numpy as np # Load the model and tokenizer from Hugging Face model_name = "KevSun/Engessay_grading_ML" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Streamlit app st.title("Automated Scoring App") st.write("Enter your English essay below to predict scores from multiple dimensions:") # Input text from user user_input = st.text_area("Your text here:") if st.button("Predict"): if user_input: # Tokenize input text inputs = tokenizer(user_input, return_tensors="pt") # Get predictions from the model with torch.no_grad(): outputs = model(**inputs) # Extract the predictions predictions = outputs.logits.squeeze() # Convert to numpy array if necessary predicted_scores = predictions.numpy() #predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) #predictions = predictions[0].tolist() # Convert predictions to a NumPy array for the calculations #predictions_np = np.array(predictions) # Scale the predictions scaled_scores = 2.25 * predicted_scores - 1.25 rounded_scores = [round(score * 2) / 2 for score in scaled_scores] # Round to nearest 0.5 # Display the predictions labels = ["cohesion", "syntax", "vocabulary", "phraseology", "grammar", "conventions"] for label, score in zip(labels, rounded_scores): st.write(f"{label}: {score:}") else: st.write("Please enter some text to get scores.")