Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,57 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import cv2
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
gui = gr.Blocks()
|
| 60 |
-
with gui:
|
| 61 |
-
gr.Markdown("# Live Video AI Assistant")
|
| 62 |
-
with gr.Row():
|
| 63 |
-
video_component = gr.Video()
|
| 64 |
-
threading.Thread(target=video_feed, daemon=True).start()
|
| 65 |
-
prompt = gr.Textbox(label="Enter your question")
|
| 66 |
-
response = gr.Textbox(label="AI Response")
|
| 67 |
-
btn = gr.Button("Ask")
|
| 68 |
-
btn.click(process_image, inputs=prompt, outputs=response)
|
| 69 |
-
|
| 70 |
-
gui.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import threading
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# Initialize the webcam
|
| 9 |
+
cap = cv2.VideoCapture(0)
|
| 10 |
+
|
| 11 |
+
# Load the Hugging Face model and processor
|
| 12 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
|
| 13 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-vqa-base").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
|
| 15 |
+
def query_the_image(query: str, image_data: bytes):
|
| 16 |
+
try:
|
| 17 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
| 18 |
+
inputs = processor(image, query, return_tensors="pt").to(model.device)
|
| 19 |
+
output = model.generate(**inputs)
|
| 20 |
+
answer = processor.decode(output[0], skip_special_tokens=True)
|
| 21 |
+
return answer
|
| 22 |
+
except Exception as e:
|
| 23 |
+
return f"Error: {e}"
|
| 24 |
+
|
| 25 |
+
def get_frame():
|
| 26 |
+
ret, frame = cap.read()
|
| 27 |
+
if not ret:
|
| 28 |
+
return None
|
| 29 |
+
_, buffer = cv2.imencode('.jpg', frame)
|
| 30 |
+
return buffer.tobytes()
|
| 31 |
+
|
| 32 |
+
def process_image(prompt):
|
| 33 |
+
frame_data = get_frame()
|
| 34 |
+
if frame_data:
|
| 35 |
+
return query_the_image(prompt, frame_data)
|
| 36 |
+
return "Error capturing image"
|
| 37 |
+
|
| 38 |
+
def video_feed():
|
| 39 |
+
while True:
|
| 40 |
+
ret, frame = cap.read()
|
| 41 |
+
if ret:
|
| 42 |
+
yield cv2.imencode('.jpg', frame)[1].tobytes()
|
| 43 |
+
else:
|
| 44 |
+
break
|
| 45 |
+
|
| 46 |
+
gui = gr.Blocks()
|
| 47 |
+
with gui:
|
| 48 |
+
gr.Markdown("# Live Video AI Assistant")
|
| 49 |
+
with gr.Row():
|
| 50 |
+
video_component = gr.Video()
|
| 51 |
+
threading.Thread(target=video_feed, daemon=True).start()
|
| 52 |
+
prompt = gr.Textbox(label="Enter your question")
|
| 53 |
+
response = gr.Textbox(label="AI Response")
|
| 54 |
+
btn = gr.Button("Ask")
|
| 55 |
+
btn.click(process_image, inputs=prompt, outputs=response)
|
| 56 |
+
|
| 57 |
+
gui.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|