import gradio as gr import os from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI from langchain.document_loaders import YoutubeLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains import LLMChain from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) def create_db_from_video_url(video_url, api_key): """ Creates an Embedding of the Video and performs """ embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key) loader = YoutubeLoader.from_youtube_url(video_url) transcripts = loader.load() # cannot provide this directly to the model so we are splitting the transcripts into small chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) docs = text_splitter.split_documents(transcripts) db = FAISS.from_documents(docs, embedding=embeddings) return db def get_response(video, request): """ Usind Gemini Pro to get the response. It can handle upto 32k tokens. """ API_KEY = os.environ.get("API_Key") db = create_db_from_video_url(video, API_KEY) docs = db.similarity_search(query=request, k=5) docs_content = " ".join([doc.page_content for doc in docs]) chat = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=API_KEY, convert_system_message_to_human=True) # creating a template for request template = """ You are an assistant that can answer questions about youtube videos based on video transcripts: {docs} Only use factual information from the transcript to answer the question. If you don't have enough information to answer the question, say "I don't know". Your Answers should be detailed. """ system_msg_prompt = SystemMessagePromptTemplate.from_template(template) # human prompt human_template = "Answer the following questions: {question}" human_msg_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages( [system_msg_prompt, human_msg_prompt] ) chain = LLMChain(llm=chat, prompt=chat_prompt) response = chain.run(question=request, docs=docs_content) return response # creating title, description for the web app title = "YouTube Video Assistant 🧑‍ðŸ’ŧ" description = "Answers to the Questions asked by the user on the specified YouTube video. (English Only)\nClick here to view [demo](https://cdn-uploads.huggingface.co/production/uploads/641aa7814577db917f70f8aa/vSEGALDIYsqdRM7t_49rp.mp4)." article = "Other Projects: \t"\ "💰 [Health Insurance Predictor](http://health-insurance-cost-predictor-k19.streamlit.app/) "\ "📰 [Fake News Detector](https://fake-news-detector-k19.streamlit.app/) "\ "ðŸŠķ [Birds Classifier](https://huggingface.co/spaces/Kathir0011/Birds_Classification)" # building the app youtube_video_assistant = gr.Interface( fn=get_response, inputs=[gr.Text(label="Enter the Youtube Video URL:", placeholder="Example: https://www.youtube.com/watch?v=MnDudvCyWpc"), gr.Text(label="Enter your Question", placeholder="Example: What's the video is about?")], outputs=gr.TextArea(label="Answers using Gemini Pro:"), title=title, description=description, article=article ) # launching the web app youtube_video_assistant.launch()