File size: 4,343 Bytes
79146ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from typing import Any
import pytorch_lightning as pl
from torchvision.models import  efficientnet_v2_s, EfficientNet_V2_S_Weights
import torch
from torch import nn
from torchvision import transforms
from torch.nn import functional as F
import yaml
from yaml.loader import SafeLoader
from PIL import Image
import gradio as gr
import os

class WeedModel(pl.LightningModule):
    def __init__(self, params):
        super().__init__()
        self.params = params
     
        model = self.params["model"]

        if(model.lower() == "efficientnet"):
            if(self.params["pretrained"]): self.base_model = efficientnet_v2_s(weights=EfficientNet_V2_S_Weights.IMAGENET1K_V1)
            else: self.base_model = efficientnet_v2_s(weights=None)
            num_ftrs = self.base_model.classifier[-1].in_features
            self.base_model.classifier[-1] = nn.Linear(num_ftrs, self.params["n_class"])

        else:
            print("not prepared model yet!!")

    def forward(self, x):
        embedding = self.base_model(x)
        return embedding

    def configure_optimizers(self):
        if(self.params["optimizer"] == "Adam"):
            optimizer = torch.optim.Adam(self.parameters(), lr=self.params["Lr"])
        elif(self.params["optimizer"] == "SGD"):
            optimizer = torch.optim.SGD(self.parameters(), lr=self.params["Lr"])
        return optimizer

    def training_step(self, train_batch, batch_idx):
        x = train_batch["image"]
        y = train_batch["label"]

        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        self.log('metrics/batch/train_loss', loss, prog_bar=False)

        preds = F.softmax(y_hat, dim=-1)
     
        return loss
    
    def validation_step(self, val_batch, batch_idx):
        
        x = val_batch["image"]
        y = val_batch["label"]

        y_hat = self(x)
        loss = F.cross_entropy(y_hat, y)
        self.log('metrics/batch/val_loss', loss)
    
    def predict_step(self, batch: Any, batch_idx: int=0, dataloader_idx: int = 0) -> Any:
        y_hat = self(batch)
        preds = torch.softmax(y_hat, dim=-1).tolist()
        
        # preds = torch.argmax(preds, dim=-1)
        return preds
        

def predict(image):

    tensor_image = transform(image)
    outs = model.predict_step(tensor_image.unsqueeze(0))
    labels = {class_names[k]: float(v) for k, v in enumerate(outs[0][:-1])}

    return labels


title = " AISeed AI Application Demo "
description = "# A Demo of Deep Learning for Weed Classification"
example_list = [["examples/" + example] for example in os.listdir("examples")]

with open("class_names.txt", "r", encoding='utf-8') as f:
    class_names = f.read().splitlines()
    
with gr.Blocks() as demo:
    demo.title = title
    gr.Markdown(description)
    with gr.Tabs():
        with gr.TabItem("for Images"):
            with gr.Row():
                with gr.Column():
                    im = gr.Image(type="pil", label="input image")
                with gr.Column():
                    label_conv = gr.Label(label="Predictions", num_top_classes=4)
                    btn = gr.Button(value="predict")
            btn.click(predict, inputs=im, outputs=[label_conv])
            gr.Examples(examples=example_list, inputs=[im], outputs=[label_conv])
        with gr.TabItem("for Webcam"):
            with gr.Row():
                with gr.Column():
                    webcam = gr.Image(type="pil", label="input image", source="webcam")
                    # capture = gr.Image(type="pil", label="output image")
                with gr.Column():
                    label = gr.Label(label="Predictions", num_top_classes=4)
                
            webcam.change(predict, inputs=webcam, outputs=[label])
    
       
if __name__ == '__main__':
    with open('config.yaml') as f:
        PARAMS = yaml.load(f, Loader=SafeLoader)
        print(PARAMS)
    model = WeedModel.load_from_checkpoint("model\epoch=08.ckpt", params=PARAMS).cpu()
    model.eval()

    transform = transforms.Compose([
                            transforms.Resize(256),
                            transforms.CenterCrop(224),
                            transforms.ToTensor(),
                            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
                        ])
    
    demo.launch()