Spaces:
Sleeping
Sleeping
TripleKdev
commited on
Commit
·
15eaf83
1
Parent(s):
cf7303a
Add application file
Browse files- app.py +79 -4
- requirements.txt +6 -2
app.py
CHANGED
@@ -1,7 +1,82 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as T
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision import models
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
from fastapi import FastAPI, UploadFile, File
|
11 |
+
from fastapi.responses import JSONResponse
|
12 |
+
import uvicorn
|
13 |
+
from fastapi.middleware.cors import CORSMiddleware
|
14 |
+
|
15 |
+
device = torch.device('cpu')
|
16 |
+
|
17 |
+
model = models.vgg16()
|
18 |
+
model.classifier[6] = nn.Linear(4096, 2)
|
19 |
+
model.load_state_dict(torch.load('model_vgg16.pth' , map_location=device))
|
20 |
+
|
21 |
+
model.eval()
|
22 |
+
|
23 |
+
transform = T.Compose([
|
24 |
+
T.Resize((224, 224)),
|
25 |
+
T.ToTensor(),
|
26 |
+
T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225),)
|
27 |
+
])
|
28 |
|
29 |
app = FastAPI()
|
30 |
|
31 |
+
app.add_middleware(
|
32 |
+
CORSMiddleware,
|
33 |
+
allow_origins=["*"], # Allows all origins
|
34 |
+
allow_credentials=True,
|
35 |
+
allow_methods=["*"], # Allows all methods
|
36 |
+
allow_headers=["*"], # Allows all headers
|
37 |
+
)
|
38 |
+
|
39 |
+
def background2white(image) :
|
40 |
+
arr = np.asarray(image)
|
41 |
+
|
42 |
+
if arr.ndim == 3 and arr.shape[-1]==4 :
|
43 |
+
white_background = Image.new("RGB", image.size, (255, 255, 255))
|
44 |
+
white_background.paste(image, (0, 0), image)
|
45 |
+
return white_background
|
46 |
+
else :
|
47 |
+
return image
|
48 |
+
|
49 |
+
@app.post("/predict/")
|
50 |
+
async def predict(file: UploadFile = File(...)):
|
51 |
+
image = Image.open(file.file)
|
52 |
+
|
53 |
+
image = background2white(image).convert("RGB")
|
54 |
+
|
55 |
+
# image.save('web/backend/input.jpg')
|
56 |
+
|
57 |
+
print(image.size)
|
58 |
+
print()
|
59 |
+
image = transform(image)
|
60 |
+
image = image.unsqueeze(0)
|
61 |
+
|
62 |
+
print(image.size)
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
output = model(image)
|
66 |
+
|
67 |
+
print(output)
|
68 |
+
|
69 |
+
_, predicted = torch.max(output, 1)
|
70 |
+
|
71 |
+
predicted_class = predicted.item()
|
72 |
+
|
73 |
+
probabilities = F.softmax(output[0] , dim=0)
|
74 |
+
probabilities = probabilities.tolist()
|
75 |
+
|
76 |
+
print(probabilities)
|
77 |
+
|
78 |
+
return JSONResponse([predicted_class , probabilities[0] , probabilities[1] , output.tolist()])
|
79 |
+
|
80 |
+
if __name__ == "__main__":
|
81 |
+
import uvicorn
|
82 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
CHANGED
@@ -1,2 +1,6 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.3.1
|
2 |
+
torchvision==0.18.1
|
3 |
+
numpy==1.26.4
|
4 |
+
pillow==10.3.0
|
5 |
+
fastapi==0.111.0
|
6 |
+
uvicorn==0.30.1
|