File size: 9,089 Bytes
a9c85a7
 
 
 
 
 
23a2c8d
5a12027
23a2c8d
a9c85a7
 
 
 
 
 
 
 
 
 
5a12027
a9c85a7
5a12027
a9c85a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23a2c8d
a9c85a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a12027
a9c85a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a12027
a9c85a7
 
 
5a12027
a9c85a7
 
 
 
 
5a12027
a9c85a7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import datasets
import evaluate
import re

_DESCRIPTION = """
VQA accuracy is a evaluation metric which is robust to inter-human variability in phrasing the answers:
$$
\\text{Acc}(ans) = \\min \\left( \\frac{\\text{# humans that said }ans}{3}, 1 \\right)
$$
Where `ans` is answered by machine. In order to be consistent with 'human accuracies', machine accuracies are averaged over all 10 choose 9 sets of human annotators.
"""


_KWARGS_DESCRIPTION = """
Args:
    predictions (`list` of `str`): Predicted answers.
    references (`list` of `str` lists): Ground truth answers. 
    answer_types (`list` of `str`, *optional*): Answer types corresponding to each questions.
    questions_type (`list` of `str`, *optional*): Question types corresponding to each questions.

Returns:
    visual question answering accuracy (`float` or `int`): Accuracy accuracy. Minimum possible value is 0. Maximum possible value is 100.

"""


_CITATION = """
@InProceedings{{VQA},
author      = {Stanislaw Antol and Aishwarya Agrawal and Jiasen Lu and Margaret Mitchell and Dhruv Batra and C. Lawrence Zitnick and Devi Parikh},
title       = {{VQA}: {V}isual {Q}uestion {A}nswering},
booktitle   = {International Conference on Computer Vision (ICCV)},
year        = {2015},
}
"""

contractions = {
    "aint": "ain't",
    "arent": "aren't",
    "cant": "can't",
    "couldve": "could've",
    "couldnt": "couldn't",
    "couldn'tve": "couldn't've",
    "couldnt've": "couldn't've",
    "didnt": "didn't",
    "doesnt": "doesn't",
    "dont": "don't",
    "hadnt": "hadn't",
    "hadnt've": "hadn't've",
    "hadn'tve": "hadn't've",
    "hasnt": "hasn't",
    "havent": "haven't",
    "hed": "he'd",
    "hed've": "he'd've",
    "he'dve": "he'd've",
    "hes": "he's",
    "howd": "how'd",
    "howll": "how'll",
    "hows": "how's",
    "Id've": "I'd've",
    "I'dve": "I'd've",
    "Im": "I'm",
    "Ive": "I've",
    "isnt": "isn't",
    "itd": "it'd",
    "itd've": "it'd've",
    "it'dve": "it'd've",
    "itll": "it'll",
    "let's": "let's",
    "maam": "ma'am",
    "mightnt": "mightn't",
    "mightnt've": "mightn't've",
    "mightn'tve": "mightn't've",
    "mightve": "might've",
    "mustnt": "mustn't",
    "mustve": "must've",
    "neednt": "needn't",
    "notve": "not've",
    "oclock": "o'clock",
    "oughtnt": "oughtn't",
    "ow's'at": "'ow's'at",
    "'ows'at": "'ow's'at",
    "'ow'sat": "'ow's'at",
    "shant": "shan't",
    "shed've": "she'd've",
    "she'dve": "she'd've",
    "she's": "she's",
    "shouldve": "should've",
    "shouldnt": "shouldn't",
    "shouldnt've": "shouldn't've",
    "shouldn'tve": "shouldn't've",
    "somebody'd": "somebodyd",
    "somebodyd've": "somebody'd've",
    "somebody'dve": "somebody'd've",
    "somebodyll": "somebody'll",
    "somebodys": "somebody's",
    "someoned": "someone'd",
    "someoned've": "someone'd've",
    "someone'dve": "someone'd've",
    "someonell": "someone'll",
    "someones": "someone's",
    "somethingd": "something'd",
    "somethingd've": "something'd've",
    "something'dve": "something'd've",
    "somethingll": "something'll",
    "thats": "that's",
    "thered": "there'd",
    "thered've": "there'd've",
    "there'dve": "there'd've",
    "therere": "there're",
    "theres": "there's",
    "theyd": "they'd",
    "theyd've": "they'd've",
    "they'dve": "they'd've",
    "theyll": "they'll",
    "theyre": "they're",
    "theyve": "they've",
    "twas": "'twas",
    "wasnt": "wasn't",
    "wed've": "we'd've",
    "we'dve": "we'd've",
    "weve": "we've",
    "werent": "weren't",
    "whatll": "what'll",
    "whatre": "what're",
    "whats": "what's",
    "whatve": "what've",
    "whens": "when's",
    "whered": "where'd",
    "wheres": "where's",
    "whereve": "where've",
    "whod": "who'd",
    "whod've": "who'd've",
    "who'dve": "who'd've",
    "wholl": "who'll",
    "whos": "who's",
    "whove": "who've",
    "whyll": "why'll",
    "whyre": "why're",
    "whys": "why's",
    "wont": "won't",
    "wouldve": "would've",
    "wouldnt": "wouldn't",
    "wouldnt've": "wouldn't've",
    "wouldn'tve": "wouldn't've",
    "yall": "y'all",
    "yall'll": "y'all'll",
    "y'allll": "y'all'll",
    "yall'd've": "y'all'd've",
    "y'alld've": "y'all'd've",
    "y'all'dve": "y'all'd've",
    "youd": "you'd",
    "youd've": "you'd've",
    "you'dve": "you'd've",
    "youll": "you'll",
    "youre": "you're",
    "youve": "you've",
}
manualMap = {
    "none": "0",
    "zero": "0",
    "one": "1",
    "two": "2",
    "three": "3",
    "four": "4",
    "five": "5",
    "six": "6",
    "seven": "7",
    "eight": "8",
    "nine": "9",
    "ten": "10",
}
articles = ["a", "an", "the"]

periodStrip = re.compile(r"(?!<=\d)(\.)(?!\d)")
commaStrip = re.compile(r"(\d)(\,)(\d)")
punct = [
    ";",
    r"/",
    "[",
    "]",
    '"',
    "{",
    "}",
    "(",
    ")",
    "=",
    "+",
    "\\",
    "_",
    "-",
    ">",
    "<",
    "@",
    "`",
    ",",
    "?",
    "!",
]


def processPunctuation(inText):
    outText = inText
    for p in punct:
        if (p + " " in inText or " " + p in inText) or (
            re.search(commaStrip, inText) != None
        ):
            outText = outText.replace(p, "")
        else:
            outText = outText.replace(p, " ")
    outText = periodStrip.sub("", outText, re.UNICODE)
    return outText


def processDigitArticle(inText):
    outText = []
    tempText = inText.lower().split()
    for word in tempText:
        word = manualMap.setdefault(word, word)
        if word not in articles:
            outText.append(word)
        else:
            pass
    for wordId, word in enumerate(outText):
        if word in contractions:
            outText[wordId] = contractions[word]
    outText = " ".join(outText)
    return outText


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class VQAAccuracy(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string", id="sequence"),
                    "references": datasets.Sequence(
                        datasets.Value("string", id="sequence"), id="references"
                    ),
                    "answer_types": datasets.Value("string", id="sequence"),
                    "question_types": datasets.Value("string", id="sequence"),
                }
            ),
            reference_urls=[
                "https://visualqa.org/evaluation.html",
                "https://github.com/GT-Vision-Lab/VQA/blob/master",
            ],
        )

    def _compute(self, predictions, references, answer_types=None, question_types=None):
        if answer_types is None:
            answer_types = [None] * len(predictions)

        if question_types is None:
            question_types = [None] * len(predictions)

        if not len(predictions) == len(answer_types) == len(question_types):
            raise ValueError(
                "The length of predictions, answer_types and question_types doesn't match."
            )

        total, ans_type_dict, ques_type_dict = [], {}, {}

        for pred, gts, ans_type, ques_type in zip(
            predictions, references, answer_types, question_types
        ):
            # to align with offical data postprocess
            pred = pred.replace("\n", " ").replace("\t", " ").strip()
            pred = processDigitArticle(processPunctuation(pred))
            gts = [processDigitArticle(processPunctuation(gt_ans)) for gt_ans in gts]

            # calculate vqa accuracy
            accuracy = []
            for i in range(len(gts)):
                other_gt = gts[:i] + gts[i + 1 :]
                matching_ans = [item for item in other_gt if item == pred]
                accuracy.append(min(1, len(matching_ans) / 3))

            vqa_acc = sum(accuracy) / len(accuracy)
            total.append(vqa_acc)

            if ans_type is not None:
                if ans_type not in ans_type_dict:
                    ans_type_dict[ans_type] = []
                ans_type_dict[ans_type].append(vqa_acc)

            if ques_type is not None:
                if ques_type not in ques_type_dict:
                    ques_type_dict[ques_type] = []
                ques_type_dict[ques_type].append(vqa_acc)

        # the following key names follow the naming of the official evaluation results
        result = {"overall": 100 * sum(total) / len(total)}

        if len(ans_type_dict) > 0:
            result["perAnswerType"] = {
                ans_type: 100 * sum(accuracy_list) / len(accuracy_list)
                for ans_type, accuracy_list in ans_type_dict.items()
            }

        if len(ques_type_dict) > 0:
            result["perQuestionType"] = {
                ques_type: 100 * sum(accuracy_list) / len(accuracy_list)
                for ques_type, accuracy_list in ques_type_dict.items()
            }

        return result