haritsahm
commited on
Commit
·
a1f1417
1
Parent(s):
18ab064
Update codes to enable device selection
Browse files- app.py +29 -5
- configs/inference.json +1 -1
app.py
CHANGED
@@ -1,11 +1,24 @@
|
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
-
|
3 |
-
from monai.bundle import ConfigParser
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
parser = ConfigParser()
|
8 |
-
parser.read_config(f=
|
9 |
parser.read_meta(f="configs/metadata.json")
|
10 |
|
11 |
inference = parser.get_parsed_content("inferer")
|
@@ -14,9 +27,17 @@ network = parser.get_parsed_content("network_def")
|
|
14 |
preprocess = parser.get_parsed_content("preprocessing")
|
15 |
postprocess = parser.get_parsed_content("postprocessing")
|
16 |
|
|
|
|
|
17 |
state_dict = torch.load("models/model.pt")
|
18 |
network.load_state_dict(state_dict, strict=True)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
label2color = {0: (0, 0, 0),
|
21 |
1: (225, 24, 69), # RED
|
22 |
2: (135, 233, 17), # GREEN
|
@@ -38,8 +59,11 @@ def visualize_instance_seg_mask(mask):
|
|
38 |
def query_image(img):
|
39 |
data = {"image": img}
|
40 |
batch = preprocess(data)
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
network.eval()
|
43 |
with torch.no_grad():
|
44 |
pred = inference(batch['image'].unsqueeze(dim=0), network)
|
45 |
|
@@ -65,7 +89,7 @@ with open('Description.md','r') as file:
|
|
65 |
markdown_content = file.read()
|
66 |
|
67 |
demo = gr.Interface(
|
68 |
-
query_image,
|
69 |
inputs=[gr.Image(type="filepath")],
|
70 |
outputs="image",
|
71 |
title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
from pathlib import Path
|
4 |
+
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
+
import torch
|
8 |
+
from monai.bundle import ConfigParser
|
9 |
+
|
10 |
+
with open("configs/inference.json") as f:
|
11 |
+
inference_config = json.load(f)
|
12 |
+
|
13 |
+
device = torch.device('cpu')
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
device = torch.device('cuda:0')
|
16 |
+
|
17 |
+
# * NOTE: device must be hardcoded, config file won't affect the device selection
|
18 |
+
inference_config["device"] = device
|
19 |
|
20 |
parser = ConfigParser()
|
21 |
+
parser.read_config(f=inference_config)
|
22 |
parser.read_meta(f="configs/metadata.json")
|
23 |
|
24 |
inference = parser.get_parsed_content("inferer")
|
|
|
27 |
preprocess = parser.get_parsed_content("preprocessing")
|
28 |
postprocess = parser.get_parsed_content("postprocessing")
|
29 |
|
30 |
+
use_fp16 = os.environ.get('USE_FP16', False)
|
31 |
+
|
32 |
state_dict = torch.load("models/model.pt")
|
33 |
network.load_state_dict(state_dict, strict=True)
|
34 |
|
35 |
+
network = network.to(device)
|
36 |
+
network.eval()
|
37 |
+
|
38 |
+
if use_fp16 and torch.cuda.is_available():
|
39 |
+
network = network.half()
|
40 |
+
|
41 |
label2color = {0: (0, 0, 0),
|
42 |
1: (225, 24, 69), # RED
|
43 |
2: (135, 233, 17), # GREEN
|
|
|
59 |
def query_image(img):
|
60 |
data = {"image": img}
|
61 |
batch = preprocess(data)
|
62 |
+
batch['image'] = batch['image'].to(device)
|
63 |
+
|
64 |
+
if use_fp16 and torch.cuda.is_available():
|
65 |
+
batch['image'] = batch['image'].half()
|
66 |
|
|
|
67 |
with torch.no_grad():
|
68 |
pred = inference(batch['image'].unsqueeze(dim=0), network)
|
69 |
|
|
|
89 |
markdown_content = file.read()
|
90 |
|
91 |
demo = gr.Interface(
|
92 |
+
query_image,
|
93 |
inputs=[gr.Image(type="filepath")],
|
94 |
outputs="image",
|
95 |
title="Medical Image Classification with MONAI - Pathology Nuclei Segmentation Classification",
|
configs/inference.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
"hovernet_mode": "fast",
|
13 |
"patch_size": 256,
|
14 |
"out_size": 164,
|
15 |
-
"device": "cpu",
|
16 |
"network_def": {
|
17 |
"_target_": "HoVerNet",
|
18 |
"mode": "@hovernet_mode",
|
|
|
12 |
"hovernet_mode": "fast",
|
13 |
"patch_size": 256,
|
14 |
"out_size": 164,
|
15 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
16 |
"network_def": {
|
17 |
"_target_": "HoVerNet",
|
18 |
"mode": "@hovernet_mode",
|