Spaces:
Build error
Build error
Upload 6 files
Browse files- Dockerfile +43 -0
- app.py +1107 -0
- requirements.txt +16 -0
- schema.py +87 -0
- summ.py +68 -0
- utils.py +116 -0
Dockerfile
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
RUN apt update && \
|
| 4 |
+
apt install -y bash \
|
| 5 |
+
poppler-utils \
|
| 6 |
+
tesseract-ocr \
|
| 7 |
+
libtesseract-dev \
|
| 8 |
+
build-essential \
|
| 9 |
+
git \
|
| 10 |
+
curl \
|
| 11 |
+
ca-certificates \
|
| 12 |
+
python3 \
|
| 13 |
+
python3-pip && \
|
| 14 |
+
rm -rf /var/lib/apt/lists
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
WORKDIR /code
|
| 18 |
+
|
| 19 |
+
COPY ./requirements.txt /code/requirements.txt
|
| 20 |
+
|
| 21 |
+
# Set up a new user named "user" with user ID 1000
|
| 22 |
+
RUN useradd -m -u 1000 user
|
| 23 |
+
|
| 24 |
+
# Switch to the "user" user
|
| 25 |
+
USER user
|
| 26 |
+
|
| 27 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
| 28 |
+
|
| 29 |
+
RUN [ "python", "-c", "import nltk; nltk.download('punkt')" ]
|
| 30 |
+
|
| 31 |
+
# Set home to the user's home directory
|
| 32 |
+
ENV HOME=/home/user \
|
| 33 |
+
PATH=/home/user/.local/bin:$PATH
|
| 34 |
+
|
| 35 |
+
# Set the working directory to the user's home directory
|
| 36 |
+
WORKDIR $HOME/app
|
| 37 |
+
|
| 38 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
| 39 |
+
COPY --chown=user . $HOME/app
|
| 40 |
+
|
| 41 |
+
COPY . .
|
| 42 |
+
|
| 43 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
app.py
ADDED
|
@@ -0,0 +1,1107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Author: Firqa Aqila Noor Arasyi
|
| 2 |
+
# Date: 2023-12-04
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import io
|
| 7 |
+
import json
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import streamlit as st
|
| 10 |
+
from stqdm import stqdm
|
| 11 |
+
from ast import literal_eval
|
| 12 |
+
from tempfile import NamedTemporaryFile
|
| 13 |
+
|
| 14 |
+
import PyPDF2
|
| 15 |
+
import pdf2image
|
| 16 |
+
import pytesseract
|
| 17 |
+
from utils import *
|
| 18 |
+
from schema import *
|
| 19 |
+
from summ import get_summ
|
| 20 |
+
from datetime import datetime
|
| 21 |
+
import time
|
| 22 |
+
import base64
|
| 23 |
+
import string
|
| 24 |
+
import random
|
| 25 |
+
import numpy as np
|
| 26 |
+
|
| 27 |
+
from langchain.llms import OpenAI
|
| 28 |
+
from langchain.chains import RetrievalQA
|
| 29 |
+
from langchain.vectorstores import Chroma
|
| 30 |
+
from langchain.chat_models import ChatOpenAI
|
| 31 |
+
from langchain.document_loaders import TextLoader
|
| 32 |
+
from chromadb.utils import embedding_functions
|
| 33 |
+
from unstructured.partition.pdf import partition_pdf
|
| 34 |
+
from unstructured.staging.base import elements_to_json
|
| 35 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 36 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 37 |
+
from langchain.chains import create_extraction_chain
|
| 38 |
+
|
| 39 |
+
from Bio import Entrez
|
| 40 |
+
nltk.download("punkt")
|
| 41 |
+
|
| 42 |
+
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
|
| 43 |
+
Entrez.email = os.getenv("ENTREZ_EMAIL")
|
| 44 |
+
Entrez.api_key = os.getenv("ENTREZ_API_KEY")
|
| 45 |
+
|
| 46 |
+
fold = -1
|
| 47 |
+
buffer = io.BytesIO()
|
| 48 |
+
|
| 49 |
+
st.cache_data()
|
| 50 |
+
def convert_df(df):
|
| 51 |
+
return df.to_csv().encode("utf-8")
|
| 52 |
+
|
| 53 |
+
# Function to create a download link for an Excel file
|
| 54 |
+
# def create_excel_download_link(df, file_name):
|
| 55 |
+
# output = io.BytesIO()
|
| 56 |
+
# with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
| 57 |
+
# df.to_excel(writer, sheet_name='Sheet1', index=False)
|
| 58 |
+
# excel_data = output.getvalue()
|
| 59 |
+
# st.download_button(label="Download Excel File", data=excel_data, key=file_name, file_name=f"{file_name}.xlsx")
|
| 60 |
+
|
| 61 |
+
class Journal:
|
| 62 |
+
|
| 63 |
+
def __init__(self, name, bytes):
|
| 64 |
+
self.name = name
|
| 65 |
+
self.bytes = bytes
|
| 66 |
+
|
| 67 |
+
def __repr__(self):
|
| 68 |
+
return f"Journal(name='{self.name}', bytes='{self.bytes}')"
|
| 69 |
+
|
| 70 |
+
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k-0613")
|
| 71 |
+
|
| 72 |
+
textex_chain = create_extraction_chain(textex_schema, llm)
|
| 73 |
+
tablex_chain = create_extraction_chain(tablex_schema, llm)
|
| 74 |
+
|
| 75 |
+
st.set_page_config(page_title="NutriGenMe Paper Extractor")
|
| 76 |
+
st.title("NutriGenMe - Paper Extraction")
|
| 77 |
+
st.markdown("<div style='text-align: left; color: white; font-size: 16px'>In its latest version, the app is equipped to extract essential information from papers, including tables in both horizontal and vertical orientations, images, and text exclusively.</div><br>", unsafe_allow_html=True)
|
| 78 |
+
|
| 79 |
+
uploaded_files = st.file_uploader("Upload Paper(s) here :", type="pdf", accept_multiple_files=True)
|
| 80 |
+
|
| 81 |
+
if uploaded_files:
|
| 82 |
+
st.warning("""
|
| 83 |
+
Warning! Prior to proceeding, please take a moment to review the following : \n
|
| 84 |
+
Certain guidelines apply when utilizing this application, particularly if you intend to extract information from tables, whether they are oriented horizontally or vertically.
|
| 85 |
+
- If you intend to perform multiple PDF processes using Horizontal Table Extraction, ensure that all your PDF files adhere to a horizontal table format
|
| 86 |
+
- If you plan to undertake multiple PDF processes with Vertical Table Extraction, ensure that all your PDF files conform to a vertical table format
|
| 87 |
+
""", icon="⚠️")
|
| 88 |
+
|
| 89 |
+
col1, col2, col3 = st.columns(3)
|
| 90 |
+
|
| 91 |
+
if uploaded_files:
|
| 92 |
+
journals = []
|
| 93 |
+
strategy = "hi_res"
|
| 94 |
+
model_name = "yolox"
|
| 95 |
+
on_h, on_v, on_t = None, None, None
|
| 96 |
+
parseButtonH, parseButtonV, parseButtonT = None, None, None
|
| 97 |
+
# if uploaded_files:
|
| 98 |
+
with col1:
|
| 99 |
+
if on_v or on_t:
|
| 100 |
+
on_h = st.toggle("Horizontal Table Extraction", disabled=True)
|
| 101 |
+
else:
|
| 102 |
+
on_h = st.toggle("Horizontal Table Extraction")
|
| 103 |
+
if on_h:
|
| 104 |
+
chunk_size_h = st.selectbox(
|
| 105 |
+
'Tokens amounts per process :',
|
| 106 |
+
(16000, 12000, 10000, 8000, 5000), key='table_h'
|
| 107 |
+
)
|
| 108 |
+
parseButtonH = st.button("Get Result", key='table_H')
|
| 109 |
+
|
| 110 |
+
with col2:
|
| 111 |
+
if on_h or on_t:
|
| 112 |
+
on_v = st.toggle("Vertical Table Extraction", disabled=True)
|
| 113 |
+
else:
|
| 114 |
+
on_v = st.toggle("Vertical Table Extraction")
|
| 115 |
+
if on_v:
|
| 116 |
+
chunk_size_v = st.selectbox(
|
| 117 |
+
'Tokens amounts per process :',
|
| 118 |
+
(16000, 12000, 10000, 8000, 5000), key='table_v'
|
| 119 |
+
)
|
| 120 |
+
parseButtonV = st.button("Get Result", key='table_V')
|
| 121 |
+
with col3:
|
| 122 |
+
if on_h or on_v:
|
| 123 |
+
on_t = st.toggle("Text Extraction ", disabled=True)
|
| 124 |
+
else:
|
| 125 |
+
on_t = st.toggle("Text Extraction ")
|
| 126 |
+
if on_t:
|
| 127 |
+
chunk_size_t = st.selectbox(
|
| 128 |
+
'Tokens amounts per process :',
|
| 129 |
+
(16000, 12000, 10000, 8000, 5000), key='no_table'
|
| 130 |
+
)
|
| 131 |
+
parseButtonT = st.button("Get Result", key="no_Table")
|
| 132 |
+
|
| 133 |
+
if on_h:
|
| 134 |
+
if parseButtonH:
|
| 135 |
+
with st.status("Extraction in progress ...", expanded=True) as status:
|
| 136 |
+
st.write("Getting Result ...")
|
| 137 |
+
csv = pd.DataFrame()
|
| 138 |
+
for uploaded_file in stqdm(uploaded_files):
|
| 139 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as pdf:
|
| 140 |
+
pdf.write(uploaded_file.getbuffer())
|
| 141 |
+
# st.write(pdf.name)
|
| 142 |
+
L = []
|
| 143 |
+
# Entity Extraction
|
| 144 |
+
st.write("☑ Extracting Entities ...")
|
| 145 |
+
bytes_data = uploaded_file.read()
|
| 146 |
+
journal = Journal(uploaded_file.name, bytes_data)
|
| 147 |
+
|
| 148 |
+
images = pdf2image.convert_from_bytes(journal.bytes)
|
| 149 |
+
extracted_text = ""
|
| 150 |
+
for image in images[:-1]:
|
| 151 |
+
text = pytesseract.image_to_string(image)
|
| 152 |
+
text = clean_text(text)
|
| 153 |
+
extracted_text += text + " "
|
| 154 |
+
text = replace_quotes(extracted_text)
|
| 155 |
+
text_chunk = split_text(text, chunk_size_h)
|
| 156 |
+
|
| 157 |
+
chunkdf = []
|
| 158 |
+
for i, chunk in enumerate(text_chunk):
|
| 159 |
+
inp = chunk
|
| 160 |
+
df = pd.DataFrame(literal_eval(str(json.dumps(tablex_chain.run(inp)[0])).replace("\'", "\"")), index=[0]).fillna('')
|
| 161 |
+
chunkdf.append(df)
|
| 162 |
+
|
| 163 |
+
concat = pd.concat(chunkdf, axis=0).reset_index().drop('index', axis=1).fillna('')
|
| 164 |
+
st.write("☑ Entities Extraction Done ..")
|
| 165 |
+
time.sleep(0.1)
|
| 166 |
+
st.write("☑ Generating Summary ...")
|
| 167 |
+
summary = get_summ(pdf.name)
|
| 168 |
+
st.write("☑ Generating Summary Done ..")
|
| 169 |
+
time.sleep(0.1)
|
| 170 |
+
st.write("☑ Table Extraction in progress ...")
|
| 171 |
+
# Table Extraction
|
| 172 |
+
# L = []
|
| 173 |
+
output_list = []
|
| 174 |
+
|
| 175 |
+
elements = partition_pdf(filename=pdf.name, strategy=strategy, infer_table_structure=True, model_name=model_name)
|
| 176 |
+
with NamedTemporaryFile(dir=".", suffix=".json") as f:
|
| 177 |
+
elements_to_json(elements, filename=f"{f.name.split('/')[-1]}")
|
| 178 |
+
json_file_path = os.path.abspath(f.name) # Get the absolute file path
|
| 179 |
+
with open(json_file_path, "r", encoding="utf-8") as jsonfile:
|
| 180 |
+
data = json.load(jsonfile)
|
| 181 |
+
extracted_elements = []
|
| 182 |
+
for entry in data:
|
| 183 |
+
if entry["type"] == "Table":
|
| 184 |
+
extracted_elements.append(entry["metadata"]["text_as_html"])
|
| 185 |
+
|
| 186 |
+
with NamedTemporaryFile(dir='.' , suffix='.txt') as txt_file:
|
| 187 |
+
text_file_path = os.path.abspath(txt_file.name)
|
| 188 |
+
with open(text_file_path, "w", encoding="utf-8") as txtfile:
|
| 189 |
+
for element in extracted_elements:
|
| 190 |
+
txtfile.write(element + "\n\n")
|
| 191 |
+
loader = TextLoader(text_file_path)
|
| 192 |
+
documents = loader.load()
|
| 193 |
+
# split it into chunks
|
| 194 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 195 |
+
docs = text_splitter.split_documents(documents)
|
| 196 |
+
embeddings = OpenAIEmbeddings()
|
| 197 |
+
|
| 198 |
+
db = Chroma.from_documents(docs, embeddings)
|
| 199 |
+
llm_table = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0)
|
| 200 |
+
qa_chain = RetrievalQA.from_chain_type(llm_table, retriever=db.as_retriever())
|
| 201 |
+
|
| 202 |
+
# List of questions
|
| 203 |
+
questions = [
|
| 204 |
+
"""Mention all genes / locus name with respective rsID / SNP and potential diseases in a curly brackets like this:
|
| 205 |
+
Example 1 : {"Genes" : "FTO", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
| 206 |
+
""",
|
| 207 |
+
"""Mention all genes / locus name with respective potential diseases in a curly brackets like this:
|
| 208 |
+
Example 2 : {"Genes" : "FTO", "SNPs" : "" (if not available), "Diseases" : "Obesity"}
|
| 209 |
+
""",
|
| 210 |
+
"""Mention all rsIDs / SNPs / Variant with respective potential diseases / traits in a curly brackets like this:
|
| 211 |
+
Example 3 : {"Genes" : "", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
| 212 |
+
"""
|
| 213 |
+
]
|
| 214 |
+
try:
|
| 215 |
+
for query in questions:
|
| 216 |
+
response = qa_chain({"query" : query})
|
| 217 |
+
output_list.append(response)
|
| 218 |
+
except Exception as e:
|
| 219 |
+
pass
|
| 220 |
+
db.delete_collection()
|
| 221 |
+
|
| 222 |
+
# 1
|
| 223 |
+
for i in range(len(output_list[0]['result'].split('\n'))):
|
| 224 |
+
if output_list[0]['result'].split('\n')[i] != "":
|
| 225 |
+
try:
|
| 226 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])[0]
|
| 227 |
+
row = {**row, **{
|
| 228 |
+
'Title' : concat['title'][0],
|
| 229 |
+
'Authors' : concat['authors'][0],
|
| 230 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 231 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 232 |
+
# 'Population' : concat['population_race'][0],
|
| 233 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 234 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 235 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 236 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 237 |
+
'Recommendation' : summary,
|
| 238 |
+
# 'Sample Size' : concat['sample_size'][0]
|
| 239 |
+
}}
|
| 240 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 241 |
+
for g in row['Genes'].strip().split(','):
|
| 242 |
+
L.append({
|
| 243 |
+
'Title' : concat['title'][0],
|
| 244 |
+
'Authors' : concat['authors'][0],
|
| 245 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 246 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 247 |
+
# 'Population' : concat['population_race'][0],
|
| 248 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 249 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 250 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 251 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 252 |
+
'Recommendation' : summary,
|
| 253 |
+
# 'Sample Size' : concat['sample_size'][0],
|
| 254 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
| 255 |
+
'SNPs' : row['SNPs'].replace('Unknown', ''),
|
| 256 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
| 257 |
+
})
|
| 258 |
+
else:
|
| 259 |
+
L.append(row)
|
| 260 |
+
|
| 261 |
+
except KeyError:
|
| 262 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])
|
| 263 |
+
row = {**row, **{
|
| 264 |
+
'Title' : concat['title'][0],
|
| 265 |
+
'Authors' : concat['authors'][0],
|
| 266 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 267 |
+
"Publisher Name" : concat['publisher_name'][0],
|
| 268 |
+
# 'Population' : concat['population_race'][0],
|
| 269 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 270 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 271 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 272 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 273 |
+
'Recommendation' : summary,
|
| 274 |
+
# 'Sample Size' : concat['sample_size'][0]
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 278 |
+
for g in row['Genes'].strip().split(','):
|
| 279 |
+
L.append({
|
| 280 |
+
'Title' : concat['title'][0],
|
| 281 |
+
'Authors' : concat['authors'][0],
|
| 282 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 283 |
+
'Publication Year' :get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 284 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 285 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 286 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 287 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 288 |
+
'Recommendation' : summary,
|
| 289 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
| 290 |
+
'SNPs' : row['SNPs'].replace('Unknown', ''),
|
| 291 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
| 292 |
+
})
|
| 293 |
+
else:
|
| 294 |
+
L.append(row)
|
| 295 |
+
except SyntaxError:
|
| 296 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])
|
| 297 |
+
row = f"""{row}"""
|
| 298 |
+
row = {**row, **{
|
| 299 |
+
'Title' : concat['title'][0],
|
| 300 |
+
'Authors' : concat['authors'][0],
|
| 301 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 302 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 303 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 304 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 305 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 306 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 307 |
+
'Recommendation' : summary,
|
| 308 |
+
# 'Population' : concat['population_race'][0],
|
| 309 |
+
# 'Sample Size' : concat['sample_size'][0]
|
| 310 |
+
}
|
| 311 |
+
}
|
| 312 |
+
if not row['SNPs'].startswith("rs"):
|
| 313 |
+
row.update({
|
| 314 |
+
'SNPs' : "-"
|
| 315 |
+
})
|
| 316 |
+
else:
|
| 317 |
+
L.append(row)
|
| 318 |
+
except ValueError:
|
| 319 |
+
if type(output_list[0]['result'].split('\n')[i]) is dict:
|
| 320 |
+
row = output_list[0]['result'].split('\n')[i]
|
| 321 |
+
row = {**row, **{
|
| 322 |
+
'Title' : concat['title'][0],
|
| 323 |
+
'Authors' : concat['authors'][0],
|
| 324 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 325 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 326 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 327 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 328 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 329 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 330 |
+
'Recommendation' : summary,
|
| 331 |
+
}
|
| 332 |
+
}
|
| 333 |
+
if not row['SNPs'].startswith("rs"):
|
| 334 |
+
row.update({
|
| 335 |
+
'SNPs' : "-"
|
| 336 |
+
})
|
| 337 |
+
else:
|
| 338 |
+
L.append(row)
|
| 339 |
+
# 2
|
| 340 |
+
for i in range(len(output_list[1]['result'].split('\n'))):
|
| 341 |
+
if output_list[1]['result'].split('\n')[i] != "":
|
| 342 |
+
try:
|
| 343 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])[0]
|
| 344 |
+
row = {**row, **{
|
| 345 |
+
'Title' : concat['title'][0],
|
| 346 |
+
'Authors' : concat['authors'][0],
|
| 347 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 348 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 349 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 350 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 351 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 352 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 353 |
+
'Recommendation' : summary,
|
| 354 |
+
}
|
| 355 |
+
}
|
| 356 |
+
if row['SNPs'] != "Not available":
|
| 357 |
+
row.update({
|
| 358 |
+
'SNPs' : "Not available"
|
| 359 |
+
})
|
| 360 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 361 |
+
for g in row['Genes'].strip().split(','):
|
| 362 |
+
L.append({
|
| 363 |
+
'Title' : concat['title'][0],
|
| 364 |
+
'Authors' : concat['authors'][0],
|
| 365 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 366 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 367 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 368 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 369 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 370 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 371 |
+
'Recommendation' : summary,
|
| 372 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
| 373 |
+
"SNPs" : "Not available",
|
| 374 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
| 375 |
+
})
|
| 376 |
+
else:
|
| 377 |
+
L.append(row)
|
| 378 |
+
except KeyError:
|
| 379 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])
|
| 380 |
+
row = {**row, **{
|
| 381 |
+
'Title' : concat['title'][0],
|
| 382 |
+
'Authors' : concat['authors'][0],
|
| 383 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 384 |
+
'Publication Year' :get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 385 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 386 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 387 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 388 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 389 |
+
'Recommendation' : summary,
|
| 390 |
+
}
|
| 391 |
+
}
|
| 392 |
+
if row['SNPs'] != "Not available":
|
| 393 |
+
row.update({
|
| 394 |
+
'SNPs' : "Not available"
|
| 395 |
+
})
|
| 396 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 397 |
+
for g in row['Genes'].strip().split(','):
|
| 398 |
+
L.append({
|
| 399 |
+
'Title' : concat['title'][0],
|
| 400 |
+
'Authors' : concat['authors'][0],
|
| 401 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 402 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 403 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 404 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 405 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 406 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 407 |
+
'Recommendation' : summary,
|
| 408 |
+
'Genes' : g.strip().upper().replace('Unknown', ''),
|
| 409 |
+
"SNPs" : "Not available",
|
| 410 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', '').replace('Unknown', '')
|
| 411 |
+
})
|
| 412 |
+
else:
|
| 413 |
+
L.append(row)
|
| 414 |
+
except SyntaxError:
|
| 415 |
+
row = f"""{row}"""
|
| 416 |
+
row = {**row, **{
|
| 417 |
+
'Title' : concat['title'][0],
|
| 418 |
+
'Authors' : concat['authors'][0],
|
| 419 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 420 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 421 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 422 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 423 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 424 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 425 |
+
'Recommendation' : summary,
|
| 426 |
+
}
|
| 427 |
+
}
|
| 428 |
+
if not row['SNPs'].startswith("rs"):
|
| 429 |
+
row.update({
|
| 430 |
+
'SNPs' : "-"
|
| 431 |
+
})
|
| 432 |
+
else:
|
| 433 |
+
L.append(row)
|
| 434 |
+
except ValueError:
|
| 435 |
+
if type(output_list[1]['result'].split('\n')[i]) is dict:
|
| 436 |
+
row = output_list[1]['result'].split('\n')[i]
|
| 437 |
+
row = {**row, **{
|
| 438 |
+
'Title' : concat['title'][0],
|
| 439 |
+
'Authors' : concat['authors'][0],
|
| 440 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 441 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 442 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 443 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 444 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 445 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 446 |
+
'Recommendation' : summary,
|
| 447 |
+
}
|
| 448 |
+
}
|
| 449 |
+
if not row['SNPs'].startswith("rs"):
|
| 450 |
+
row.update({
|
| 451 |
+
'SNPs' : "-"
|
| 452 |
+
})
|
| 453 |
+
else:
|
| 454 |
+
L.append(row)
|
| 455 |
+
# 3
|
| 456 |
+
for i in range(len(output_list[2]['result'].split('\n'))):
|
| 457 |
+
if output_list[2]['result'].split('\n')[i] != "":
|
| 458 |
+
try:
|
| 459 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])[0]
|
| 460 |
+
row = {**row, **{
|
| 461 |
+
'Title' : concat['title'][0],
|
| 462 |
+
'Authors' : concat['authors'][0],
|
| 463 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 464 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 465 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 466 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 467 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 468 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 469 |
+
'Recommendation' : summary,
|
| 470 |
+
}
|
| 471 |
+
}
|
| 472 |
+
if not row['SNPs'].startswith("rs"):
|
| 473 |
+
row.update({
|
| 474 |
+
'SNPs' : "-"
|
| 475 |
+
})
|
| 476 |
+
else:
|
| 477 |
+
L.append(row)
|
| 478 |
+
except KeyError:
|
| 479 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])
|
| 480 |
+
row = {**row, **{
|
| 481 |
+
'Title' : concat['title'][0],
|
| 482 |
+
'Authors' : concat['authors'][0],
|
| 483 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 484 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 485 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 486 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 487 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 488 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 489 |
+
'Recommendation' : summary,
|
| 490 |
+
}
|
| 491 |
+
}
|
| 492 |
+
if not row['SNPs'].startswith("rs"):
|
| 493 |
+
row.update({
|
| 494 |
+
'SNPs' : "-"
|
| 495 |
+
})
|
| 496 |
+
else:
|
| 497 |
+
L.append(row)
|
| 498 |
+
except SyntaxError:
|
| 499 |
+
row = f"""{row}"""
|
| 500 |
+
row = {**row, **{
|
| 501 |
+
'Title' : concat['title'][0],
|
| 502 |
+
'Authors' : concat['authors'][0],
|
| 503 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 504 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 505 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 506 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 507 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 508 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 509 |
+
'Recommendation' : summary,
|
| 510 |
+
}
|
| 511 |
+
}
|
| 512 |
+
if not row['SNPs'].startswith("rs"):
|
| 513 |
+
row.update({
|
| 514 |
+
'SNPs' : "-"
|
| 515 |
+
})
|
| 516 |
+
else:
|
| 517 |
+
L.append(row)
|
| 518 |
+
except ValueError:
|
| 519 |
+
if type(output_list[2]['result'].split('\n')[i]) is dict:
|
| 520 |
+
row = output_list[2]['result'].split('\n')[i]
|
| 521 |
+
row = {**row, **{
|
| 522 |
+
'Title' : concat['title'][0],
|
| 523 |
+
'Authors' : concat['authors'][0],
|
| 524 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 525 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 526 |
+
'Population' : upper_abbreviation(' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title()),
|
| 527 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 528 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title()),
|
| 529 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title()),
|
| 530 |
+
'Recommendation' : summary,
|
| 531 |
+
}
|
| 532 |
+
}
|
| 533 |
+
if not row['SNPs'].startswith("rs"):
|
| 534 |
+
row.update({
|
| 535 |
+
'SNPs' : "-"
|
| 536 |
+
})
|
| 537 |
+
else:
|
| 538 |
+
L.append(row)
|
| 539 |
+
|
| 540 |
+
st.write(output_list[2]['result'].split('\n'))
|
| 541 |
+
st.write("☑ Table Extraction Done ...")
|
| 542 |
+
status.update(label="Gene and SNPs succesfully collected.")
|
| 543 |
+
csv = pd.DataFrame(L).replace('', 'Not available')
|
| 544 |
+
csv = pd.DataFrame(L).replace('Unknown', '')
|
| 545 |
+
st.dataframe(csv)
|
| 546 |
+
|
| 547 |
+
generated_key = ''.join(random.choice(string.ascii_letters + string.digits) for i in range(16))
|
| 548 |
+
# if st.button("Download Excel File", key=generated_key):
|
| 549 |
+
# excel_link = create_excel_download_link(csv, uploaded_file.name.replace('.pdf', ''))
|
| 550 |
+
# st.markdown(excel_link, unsafe_allow_html=True)
|
| 551 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
| 552 |
+
# Write each dataframe to a different worksheet
|
| 553 |
+
csv.to_excel(writer, sheet_name='Result')
|
| 554 |
+
writer.close()
|
| 555 |
+
|
| 556 |
+
# time_now = datetime.now()
|
| 557 |
+
# current_time = time_now.strftime("%H:%M:%S")
|
| 558 |
+
|
| 559 |
+
csv = convert_df(csv)
|
| 560 |
+
st.download_button(
|
| 561 |
+
label="Save Result",
|
| 562 |
+
data=buffer,
|
| 563 |
+
file_name=f'{uploaded_file.name}'.replace('.pdf', '') + '.xlsx',
|
| 564 |
+
mime='application/vnd.ms-excel',
|
| 565 |
+
key=generated_key
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
if on_v:
|
| 569 |
+
if parseButtonV:
|
| 570 |
+
with st.status("Extraction in progress ...", expanded=True) as status:
|
| 571 |
+
st.write("Getting Result ...")
|
| 572 |
+
csv = pd.DataFrame()
|
| 573 |
+
for uploaded_file in stqdm(uploaded_files):
|
| 574 |
+
L = []
|
| 575 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as pdf:
|
| 576 |
+
pdf.write(uploaded_file.getbuffer())
|
| 577 |
+
# Open the PDF file in read-binary mode
|
| 578 |
+
with open(pdf.name, 'rb') as pdf_file:
|
| 579 |
+
# Create a PDF reader object
|
| 580 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 581 |
+
# Create a PDF writer object to write the rotated pages to a new PDF
|
| 582 |
+
pdf_writer = PyPDF2.PdfWriter()
|
| 583 |
+
# Iterate through each page in the original PDF
|
| 584 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 585 |
+
# Get the page object
|
| 586 |
+
page = pdf_reader.pages[page_num]
|
| 587 |
+
# Rotate the page 90 degrees clockwise (use -90 for counterclockwise)
|
| 588 |
+
page.rotate(90)
|
| 589 |
+
# Add the rotated page to the PDF writer
|
| 590 |
+
pdf_writer.add_page(page)
|
| 591 |
+
|
| 592 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as rotated_pdf:
|
| 593 |
+
pdf_writer.write(rotated_pdf.name)
|
| 594 |
+
# Entity Extraction
|
| 595 |
+
st.write("☑ Extracting Entities ...")
|
| 596 |
+
bytes_data = uploaded_file.read()
|
| 597 |
+
journal = Journal(uploaded_file.name, bytes_data)
|
| 598 |
+
|
| 599 |
+
images = pdf2image.convert_from_bytes(journal.bytes)
|
| 600 |
+
extracted_text = ""
|
| 601 |
+
for image in images[:-1]:
|
| 602 |
+
text = pytesseract.image_to_string(image)
|
| 603 |
+
text = clean_text(text)
|
| 604 |
+
extracted_text += text + " "
|
| 605 |
+
text = replace_quotes(extracted_text)
|
| 606 |
+
text_chunk = split_text(text, chunk_size_v)
|
| 607 |
+
|
| 608 |
+
chunkdf = []
|
| 609 |
+
for i, chunk in enumerate(text_chunk):
|
| 610 |
+
inp = chunk
|
| 611 |
+
df = pd.DataFrame(literal_eval(str(json.dumps(tablex_chain.run(inp)[0])).replace("\'", "\"")), index=[0]).fillna('')
|
| 612 |
+
chunkdf.append(df)
|
| 613 |
+
|
| 614 |
+
concat = pd.concat(chunkdf, axis=0).reset_index().drop('index', axis=1).fillna('')
|
| 615 |
+
st.write("☑ Entities Extraction Done ..")
|
| 616 |
+
time.sleep(0.1)
|
| 617 |
+
st.write("☑ Generating Summary ...")
|
| 618 |
+
summary = get_summ(pdf.name)
|
| 619 |
+
st.write("☑ Generating Summary Done ..")
|
| 620 |
+
time.sleep(0.1)
|
| 621 |
+
st.write("☑ Table Extraction in progress ...")
|
| 622 |
+
|
| 623 |
+
# Table Extraction
|
| 624 |
+
output_list = []
|
| 625 |
+
|
| 626 |
+
elements = partition_pdf(filename=rotated_pdf.name, strategy=strategy, infer_table_structure=True, model_name=model_name)
|
| 627 |
+
with NamedTemporaryFile(dir=".", suffix=".json") as f:
|
| 628 |
+
elements_to_json(elements, filename=f"{f.name.split('/')[-1]}")
|
| 629 |
+
json_file_path = os.path.abspath(f.name) # Get the absolute file path
|
| 630 |
+
with open(json_file_path, "r", encoding="utf-8") as jsonfile:
|
| 631 |
+
data = json.load(jsonfile)
|
| 632 |
+
extracted_elements = []
|
| 633 |
+
for entry in data:
|
| 634 |
+
if entry["type"] == "Table":
|
| 635 |
+
extracted_elements.append(entry["metadata"]["text_as_html"])
|
| 636 |
+
|
| 637 |
+
with NamedTemporaryFile(dir='.' , suffix='.txt') as txt_file:
|
| 638 |
+
text_file_path = os.path.abspath(txt_file.name)
|
| 639 |
+
with open(text_file_path, "w", encoding="utf-8") as txtfile:
|
| 640 |
+
for element in extracted_elements:
|
| 641 |
+
txtfile.write(element + "\n\n")
|
| 642 |
+
loader = TextLoader(text_file_path)
|
| 643 |
+
documents = loader.load()
|
| 644 |
+
# split it into chunks
|
| 645 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 646 |
+
docs = text_splitter.split_documents(documents)
|
| 647 |
+
embeddings = OpenAIEmbeddings()
|
| 648 |
+
|
| 649 |
+
db = Chroma.from_documents(docs, embeddings)
|
| 650 |
+
llm_table = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0)
|
| 651 |
+
qa_chain = RetrievalQA.from_chain_type(llm_table, retriever=db.as_retriever())
|
| 652 |
+
|
| 653 |
+
# List of questions
|
| 654 |
+
questions = [
|
| 655 |
+
"""Mention all genes / locus name with respective rsID / SNP and potential diseases in a curly brackets like this:
|
| 656 |
+
Example 1 : {"Genes" : "FTO", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
| 657 |
+
""",
|
| 658 |
+
"""Mention all genes / locus name with respective potential diseases in a curly brackets like this:
|
| 659 |
+
Example 2 : {"Genes" : "FTO", "SNPs" : "" (if not available), "Diseases" : "Obesitya"}
|
| 660 |
+
""",
|
| 661 |
+
"""Mention all rsIDs / SNPs / Variant with respective potential diseases / traits in a curly brackets like this:
|
| 662 |
+
Example 3 : {"Genes" : "", "SNPs" : "rs9939609", "Diseases" : "Obesity"}
|
| 663 |
+
"""
|
| 664 |
+
]
|
| 665 |
+
try:
|
| 666 |
+
for query in questions:
|
| 667 |
+
response = qa_chain({"query" : query})
|
| 668 |
+
output_list.append(response)
|
| 669 |
+
except Exception as e:
|
| 670 |
+
pass
|
| 671 |
+
db.delete_collection()
|
| 672 |
+
# 1
|
| 673 |
+
for i in range(len(output_list[0]['result'].split('\n'))):
|
| 674 |
+
if output_list[0]['result'].split('\n')[i] != "":
|
| 675 |
+
try:
|
| 676 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])[0]
|
| 677 |
+
row = {**row, **{
|
| 678 |
+
'Title' : concat['title'][0],
|
| 679 |
+
'Authors' : concat['authors'][0],
|
| 680 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 681 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 682 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 683 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 684 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 685 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 686 |
+
'Recommendation' : summary,
|
| 687 |
+
}}
|
| 688 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 689 |
+
for g in row['Genes'].strip().split(','):
|
| 690 |
+
L.append({
|
| 691 |
+
'Genes' : g.strip().upper(),
|
| 692 |
+
'SNPs' : row['SNPs'],
|
| 693 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
| 694 |
+
'Title' : concat['title'][0],
|
| 695 |
+
'Authors' : concat['authors'][0],
|
| 696 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 697 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 698 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 699 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 700 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 701 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 702 |
+
'Recommendation' : summary,
|
| 703 |
+
})
|
| 704 |
+
else:
|
| 705 |
+
L.append(row)
|
| 706 |
+
except KeyError:
|
| 707 |
+
row = literal_eval(output_list[0]['result'].split('\n')[i])
|
| 708 |
+
row = {**row, **{
|
| 709 |
+
'Title' : concat['title'][0],
|
| 710 |
+
'Authors' : concat['authors'][0],
|
| 711 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 712 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 713 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 714 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 715 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 716 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 717 |
+
'Recommendation' : summary,
|
| 718 |
+
}}
|
| 719 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 720 |
+
for g in row['Genes'].strip().split(','):
|
| 721 |
+
L.append({
|
| 722 |
+
'Genes' : g.strip().upper(),
|
| 723 |
+
'SNPs' : row['SNPs'],
|
| 724 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
| 725 |
+
'Title' : concat['title'][0],
|
| 726 |
+
'Authors' : concat['authors'][0],
|
| 727 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 728 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 729 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 730 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 731 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 732 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 733 |
+
'Recommendation' : summary,
|
| 734 |
+
})
|
| 735 |
+
else:
|
| 736 |
+
L.append(row)
|
| 737 |
+
except ValueError:
|
| 738 |
+
if type(output_list[0]['result'].split('\n')[i]) is dict:
|
| 739 |
+
row = output_list[0]['result'].split('\n')[i]
|
| 740 |
+
row = {**row, **{
|
| 741 |
+
'Title' : concat['title'][0],
|
| 742 |
+
'Authors' : concat['authors'][0],
|
| 743 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 744 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 745 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 746 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 747 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 748 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 749 |
+
'Recommendation' : summary,
|
| 750 |
+
}
|
| 751 |
+
}
|
| 752 |
+
if not row['SNPs'].startswith("rs"):
|
| 753 |
+
row.update({
|
| 754 |
+
'SNPs' : "-"
|
| 755 |
+
})
|
| 756 |
+
else:
|
| 757 |
+
L.append(row)
|
| 758 |
+
except SyntaxError:
|
| 759 |
+
row = literal_eval("""{}""".format(output_list[2]['result'].split('\n')[i]))
|
| 760 |
+
row = {**row, **{
|
| 761 |
+
'Title' : concat['title'][0],
|
| 762 |
+
'Authors' : concat['authors'][0],
|
| 763 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 764 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 765 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 766 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 767 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 768 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 769 |
+
'Recommendation' : summary,
|
| 770 |
+
}
|
| 771 |
+
}
|
| 772 |
+
if not row['SNPs'].startswith("rs"):
|
| 773 |
+
row.update({
|
| 774 |
+
'SNPs' : "-"
|
| 775 |
+
})
|
| 776 |
+
else:
|
| 777 |
+
L.append(row)
|
| 778 |
+
# 2
|
| 779 |
+
for i in range(len(output_list[1]['result'].split('\n'))):
|
| 780 |
+
if output_list[1]['result'].split('\n')[i] != "":
|
| 781 |
+
try:
|
| 782 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])[0]
|
| 783 |
+
row = {**row, **{
|
| 784 |
+
'Title' : concat['title'][0],
|
| 785 |
+
'Authors' : concat['authors'][0],
|
| 786 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 787 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 788 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 789 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 790 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 791 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 792 |
+
'Recommendation' : summary,
|
| 793 |
+
}}
|
| 794 |
+
if row['SNPs'] != "Not available":
|
| 795 |
+
row.update({
|
| 796 |
+
'SNPs' : "Not available"
|
| 797 |
+
})
|
| 798 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 799 |
+
for g in row['Genes'].strip().split(','):
|
| 800 |
+
L.append({
|
| 801 |
+
'Genes' : g.strip().upper(),
|
| 802 |
+
"SNPs" : "Not available",
|
| 803 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
| 804 |
+
'Title' : concat['title'][0],
|
| 805 |
+
'Authors' : concat['authors'][0],
|
| 806 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 807 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 808 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 809 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 810 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 811 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 812 |
+
'Recommendation' : summary,
|
| 813 |
+
})
|
| 814 |
+
else:
|
| 815 |
+
L.append(row)
|
| 816 |
+
except KeyError:
|
| 817 |
+
row = literal_eval(output_list[1]['result'].split('\n')[i])
|
| 818 |
+
row = {**row, **{
|
| 819 |
+
'Title' : concat['title'][0],
|
| 820 |
+
'Authors' : concat['authors'][0],
|
| 821 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 822 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 823 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 824 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 825 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 826 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 827 |
+
'Recommendation' : summary,
|
| 828 |
+
}}
|
| 829 |
+
if row['SNPs'] != "Not available":
|
| 830 |
+
row.update({
|
| 831 |
+
'SNPs' : "Not available"
|
| 832 |
+
})
|
| 833 |
+
if len(row['Genes'].strip().split(',')) > 1:
|
| 834 |
+
for g in row['Genes'].strip().split(','):
|
| 835 |
+
L.append({
|
| 836 |
+
'Genes' : g.strip().upper(),
|
| 837 |
+
"SNPs" : "Not available",
|
| 838 |
+
"Diseases" : ''.join(list(row['Diseases'].title() if row['Diseases'] not in ['T2D', 'T2DM', 'NAFLD', 'CVD'] else row['Diseases'])).replace('Unknown', ''),
|
| 839 |
+
'Title' : concat['title'][0],
|
| 840 |
+
'Authors' : concat['authors'][0],
|
| 841 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 842 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 843 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 844 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 845 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 846 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 847 |
+
'Recommendation' : summary,
|
| 848 |
+
})
|
| 849 |
+
else:
|
| 850 |
+
L.append(row)
|
| 851 |
+
except ValueError:
|
| 852 |
+
if type(output_list[1]['result'].split('\n')[i]) is dict:
|
| 853 |
+
row = output_list[1]['result'].split('\n')[i]
|
| 854 |
+
row = {**row, **{
|
| 855 |
+
'Title' : concat['title'][0],
|
| 856 |
+
'Authors' : concat['authors'][0],
|
| 857 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 858 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 859 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 860 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 861 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 862 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 863 |
+
'Recommendation' : summary,
|
| 864 |
+
}
|
| 865 |
+
}
|
| 866 |
+
if not row['SNPs'].startswith("rs"):
|
| 867 |
+
row.update({
|
| 868 |
+
'SNPs' : "-"
|
| 869 |
+
})
|
| 870 |
+
else:
|
| 871 |
+
L.append(row)
|
| 872 |
+
except SyntaxError:
|
| 873 |
+
row = literal_eval("""{}""".format(output_list[2]['result'].split('\n')[i]))
|
| 874 |
+
row = {**row, **{
|
| 875 |
+
'Title' : concat['title'][0],
|
| 876 |
+
'Authors' : concat['authors'][0],
|
| 877 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 878 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 879 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 880 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 881 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 882 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 883 |
+
'Recommendation' : summary,
|
| 884 |
+
}
|
| 885 |
+
}
|
| 886 |
+
if not row['SNPs'].startswith("rs"):
|
| 887 |
+
row.update({
|
| 888 |
+
'SNPs' : "-"
|
| 889 |
+
})
|
| 890 |
+
else:
|
| 891 |
+
L.append(row)
|
| 892 |
+
# 3
|
| 893 |
+
for i in range(len(output_list[2]['result'].split('\n'))):
|
| 894 |
+
if output_list[2]['result'].split('\n')[i] != "":
|
| 895 |
+
try:
|
| 896 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])[0]
|
| 897 |
+
row = {**row, **{
|
| 898 |
+
'Title' : concat['title'][0],
|
| 899 |
+
'Authors' : concat['authors'][0],
|
| 900 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 901 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 902 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 903 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 904 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 905 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 906 |
+
'Recommendation' : summary,
|
| 907 |
+
}
|
| 908 |
+
}
|
| 909 |
+
if not row['SNPs'].startswith("rs"):
|
| 910 |
+
row.update({
|
| 911 |
+
'SNPs' : "-"
|
| 912 |
+
})
|
| 913 |
+
else:
|
| 914 |
+
L.append(row)
|
| 915 |
+
except KeyError:
|
| 916 |
+
row = literal_eval(output_list[2]['result'].split('\n')[i])
|
| 917 |
+
row = {**row, **{
|
| 918 |
+
'Title' : concat['title'][0],
|
| 919 |
+
'Authors' : concat['authors'][0],
|
| 920 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 921 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 922 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 923 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 924 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 925 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 926 |
+
'Recommendation' : summary,
|
| 927 |
+
}
|
| 928 |
+
}
|
| 929 |
+
if not row['SNPs'].startswith("rs"):
|
| 930 |
+
row.update({
|
| 931 |
+
'SNPs' : "-"
|
| 932 |
+
})
|
| 933 |
+
else:
|
| 934 |
+
L.append(row)
|
| 935 |
+
except ValueError:
|
| 936 |
+
if type(output_list[2]['result'].split('\n')[i]) is dict:
|
| 937 |
+
row = output_list[2]['result'].split('\n')[i]
|
| 938 |
+
row = {**row, **{
|
| 939 |
+
'Title' : concat['title'][0],
|
| 940 |
+
'Authors' : concat['authors'][0],
|
| 941 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 942 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 943 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 944 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 945 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 946 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 947 |
+
'Recommendation' : summary,
|
| 948 |
+
}
|
| 949 |
+
}
|
| 950 |
+
if not row['SNPs'].startswith("rs"):
|
| 951 |
+
row.update({
|
| 952 |
+
'SNPs' : "-"
|
| 953 |
+
})
|
| 954 |
+
else:
|
| 955 |
+
L.append(row)
|
| 956 |
+
except SyntaxError:
|
| 957 |
+
row = literal_eval("""{}""".format(output_list[2]['result'].split('\n')[i]))
|
| 958 |
+
row = {**row, **{
|
| 959 |
+
'Title' : concat['title'][0],
|
| 960 |
+
'Authors' : concat['authors'][0],
|
| 961 |
+
'Publisher Name' : concat['publisher_name'][0],
|
| 962 |
+
'Publication Year' : get_valid_year(' '.join(concat['year_of_publication'].values.tolist())),
|
| 963 |
+
'Population' : ' '.join(concat['population_race'].values.tolist()).replace('Unknown', '').title(),
|
| 964 |
+
'Sample Size' : sample_size_postproc(' '.join(concat['sample_size'].values.tolist()).replace('Unknown', '').title()),
|
| 965 |
+
'Study Methodology' : ' '.join(concat['study_methodology'].values.tolist()).replace('Unknown', '').title(),
|
| 966 |
+
'Study Level' : ' '.join(concat['study_level'].values.tolist()).replace('Unknown', '').title(),
|
| 967 |
+
'Recommendation' : summary,
|
| 968 |
+
}
|
| 969 |
+
}
|
| 970 |
+
if not row['SNPs'].startswith("rs"):
|
| 971 |
+
row.update({
|
| 972 |
+
'SNPs' : "-"
|
| 973 |
+
})
|
| 974 |
+
else:
|
| 975 |
+
L.append(row)
|
| 976 |
+
st.write("☑ Table Extraction Done")
|
| 977 |
+
status.update(label="Gene and SNPs succesfully collected.")
|
| 978 |
+
csv = pd.DataFrame(L).replace('', 'Not available')
|
| 979 |
+
csv = pd.DataFrame(L).replace('Unknown', '')
|
| 980 |
+
st.dataframe(csv)
|
| 981 |
+
|
| 982 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
| 983 |
+
# Write each dataframe to a different worksheet
|
| 984 |
+
csv.to_excel(writer, sheet_name='Result')
|
| 985 |
+
writer.close()
|
| 986 |
+
|
| 987 |
+
time_now = datetime.now()
|
| 988 |
+
current_time = time_now.strftime("%H:%M:%S")
|
| 989 |
+
|
| 990 |
+
csv = convert_df(csv)
|
| 991 |
+
st.download_button(
|
| 992 |
+
label="Save Result",
|
| 993 |
+
data=buffer,
|
| 994 |
+
file_name=f'{uploaded_file.name}'.replace('.pdf', '') + '.xlsx',
|
| 995 |
+
mime='application/vnd.ms-excel'
|
| 996 |
+
)
|
| 997 |
+
|
| 998 |
+
if on_t:
|
| 999 |
+
if parseButtonT:
|
| 1000 |
+
with st.status("Extraction in progress ...", expanded=True) as status:
|
| 1001 |
+
st.write("Getting Result ...")
|
| 1002 |
+
csv = pd.DataFrame()
|
| 1003 |
+
for uploaded_file in stqdm(uploaded_files):
|
| 1004 |
+
L = []
|
| 1005 |
+
with NamedTemporaryFile(dir='.', suffix=".pdf") as pdf:
|
| 1006 |
+
pdf.write(uploaded_file.getbuffer())
|
| 1007 |
+
|
| 1008 |
+
# Entity Extraction
|
| 1009 |
+
st.write("☑ Extracting Entities ...")
|
| 1010 |
+
bytes_data = uploaded_file.read()
|
| 1011 |
+
journal = Journal(uploaded_file.name, bytes_data)
|
| 1012 |
+
|
| 1013 |
+
images = pdf2image.convert_from_bytes(journal.bytes)
|
| 1014 |
+
extracted_text = ""
|
| 1015 |
+
for image in images[:-1]:
|
| 1016 |
+
text = pytesseract.image_to_string(image)
|
| 1017 |
+
text = clean_text(text)
|
| 1018 |
+
extracted_text += text + " "
|
| 1019 |
+
text = replace_quotes(extracted_text)
|
| 1020 |
+
text_chunk = split_text(text, chunk_size_t)
|
| 1021 |
+
|
| 1022 |
+
chunkdf = []
|
| 1023 |
+
for i, chunk in enumerate(text_chunk):
|
| 1024 |
+
inp = chunk
|
| 1025 |
+
df = pd.DataFrame(literal_eval(str(json.dumps(textex_chain.run(inp)[0])).replace("\'", "\"")), index=[0]).fillna('')
|
| 1026 |
+
chunkdf.append(df)
|
| 1027 |
+
|
| 1028 |
+
concat = pd.concat(chunkdf, axis=0).reset_index().drop('index', axis=1).fillna('')
|
| 1029 |
+
st.write("☑ Entities Extraction Done ..")
|
| 1030 |
+
time.sleep(0.1)
|
| 1031 |
+
st.write("☑ Generating Summary ...")
|
| 1032 |
+
|
| 1033 |
+
concat['SNPs'] = concat['SNPs'].apply(lambda x: x if x.startswith('rs') else '')
|
| 1034 |
+
for col in list(concat.columns):
|
| 1035 |
+
concat[col] = concat[col].apply(lambda x: x if x not in ['N/A', 'not mentioned', 'Not mentioned', 'Unknown'] else '')
|
| 1036 |
+
|
| 1037 |
+
summary = get_summ(pdf.name)
|
| 1038 |
+
time.sleep(0.1)
|
| 1039 |
+
st.write("☑ Generating Summary Done...")
|
| 1040 |
+
for i in range(len(concat)):
|
| 1041 |
+
if (len(concat['genes_locus'][i].split(',')) >= 1) and concat['SNPs'][i] == '':
|
| 1042 |
+
for g in concat['genes_locus'][i].split(','):
|
| 1043 |
+
L.append({
|
| 1044 |
+
'Title' : concat['title'][0],
|
| 1045 |
+
'Author' : concat['authors'][0],
|
| 1046 |
+
'Publisher Name' : concat['publisher'][0],
|
| 1047 |
+
'Publication Year' : get_valid_year(' '.join(concat['publication_year'].values.tolist())),
|
| 1048 |
+
'Genes' : g.upper(),
|
| 1049 |
+
'Population' : upper_abbreviation(' '.join(np.unique(concat['population_race'].values.tolist())).title()),
|
| 1050 |
+
'Diseases' : upper_abbreviation(' '.join(concat['diseases'].values.tolist()).title()),
|
| 1051 |
+
'Sample Size' : sample_size_postproc(upper_abbreviation(' '.join(concat['sample_size'].values.tolist()).title())),
|
| 1052 |
+
'SNPs' : concat['SNPs'][i],
|
| 1053 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).title()),
|
| 1054 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).title()),
|
| 1055 |
+
'Recommendation' : summary,
|
| 1056 |
+
})
|
| 1057 |
+
elif (len(concat['SNPs'][i].split(',')) >= 1):
|
| 1058 |
+
for s in concat['SNPs'][i].split(','):
|
| 1059 |
+
try:
|
| 1060 |
+
L.append({
|
| 1061 |
+
'Title' : concat['title'][0],
|
| 1062 |
+
'Author' : concat['authors'][0],
|
| 1063 |
+
'Publisher Name' : concat['publisher'][0],
|
| 1064 |
+
'Publication Year' : get_valid_year(' '.join(concat['publication_year'].values.tolist())),
|
| 1065 |
+
'Genes' : get_geneName(s.strip()).upper(),
|
| 1066 |
+
'Population' : upper_abbreviation(' '.join(np.unique(concat['population_race'].values.tolist())).title()),
|
| 1067 |
+
'Diseases' : upper_abbreviation(' '.join(concat['diseases'].values.tolist()).title()),
|
| 1068 |
+
'Sample Size' : sample_size_postproc(upper_abbreviation(' '.join(concat['sample_size'].values.tolist()).title())),
|
| 1069 |
+
'SNPs' : s,
|
| 1070 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).title()),
|
| 1071 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).title()),
|
| 1072 |
+
'Recommendation' : summary,
|
| 1073 |
+
})
|
| 1074 |
+
except Exception as e:
|
| 1075 |
+
L.append({
|
| 1076 |
+
'Title' : concat['title'][0],
|
| 1077 |
+
'Author' : concat['authors'][0],
|
| 1078 |
+
'Publisher Name' : concat['publisher'][0],
|
| 1079 |
+
'Publication Year' : get_valid_year(' '.join(concat['publication_year'].values.tolist())),
|
| 1080 |
+
'Genes' : '',
|
| 1081 |
+
'Population' : upper_abbreviation(' '.join(np.unique(concat['population_race'].values.tolist())).title()),
|
| 1082 |
+
'Diseases' : upper_abbreviation(' '.join(concat['diseases'].values.tolist()).title()),
|
| 1083 |
+
'Sample Size' : sample_size_postproc(upper_abbreviation(' '.join(concat['sample_size'].values.tolist()).title())),
|
| 1084 |
+
'SNPs' : s,
|
| 1085 |
+
'Study Methodology' : upper_abbreviation(' '.join(concat['study_methodology'].values.tolist()).title()),
|
| 1086 |
+
'Study Level' : upper_abbreviation(' '.join(concat['study_level'].values.tolist()).title()),
|
| 1087 |
+
'Recommendation' : summary,
|
| 1088 |
+
})
|
| 1089 |
+
|
| 1090 |
+
csv = pd.concat([csv, pd.DataFrame(L)], ignore_index=True)
|
| 1091 |
+
status.update(label="Gene and SNPs succesfully collected.")
|
| 1092 |
+
st.dataframe(csv)
|
| 1093 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
| 1094 |
+
# Write each dataframe to a different worksheet
|
| 1095 |
+
csv.to_excel(writer, sheet_name='Result')
|
| 1096 |
+
writer.close()
|
| 1097 |
+
|
| 1098 |
+
time_now = datetime.now()
|
| 1099 |
+
current_time = time_now.strftime("%H:%M:%S")
|
| 1100 |
+
|
| 1101 |
+
csv = convert_df(csv)
|
| 1102 |
+
st.download_button(
|
| 1103 |
+
label="Save Result",
|
| 1104 |
+
data=buffer,
|
| 1105 |
+
file_name=f'{uploaded_file.name}'.replace('.pdf', '') + '.xlsx',
|
| 1106 |
+
mime='application/vnd.ms-excel'
|
| 1107 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pikepdf
|
| 2 |
+
stqdm
|
| 3 |
+
pdf2image
|
| 4 |
+
PyPDF2
|
| 5 |
+
pytesseract
|
| 6 |
+
unstructured
|
| 7 |
+
chromadb==0.3.29
|
| 8 |
+
nltk
|
| 9 |
+
pandas
|
| 10 |
+
streamlit
|
| 11 |
+
xlsxwriter
|
| 12 |
+
openai
|
| 13 |
+
biopython
|
| 14 |
+
langchain
|
| 15 |
+
unstructured-pytesseract
|
| 16 |
+
unstructured-inference
|
schema.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
textex_schema = {
|
| 2 |
+
"properties" : {
|
| 3 |
+
"title" : {
|
| 4 |
+
"type" : "string",
|
| 5 |
+
"description" : "Title of the given text. Often located in the top of the first page."
|
| 6 |
+
},
|
| 7 |
+
"authors" : {
|
| 8 |
+
"type" : "string",
|
| 9 |
+
"description" : "Authors / writers of the given text. Some of the names of the people."
|
| 10 |
+
},
|
| 11 |
+
"publisher" : {
|
| 12 |
+
"type" : "string",
|
| 13 |
+
"description" : "Publisher name of the given text."
|
| 14 |
+
},
|
| 15 |
+
"publication_year" : {
|
| 16 |
+
"type" : "string",
|
| 17 |
+
"description" : "The year when the given text publised."
|
| 18 |
+
},
|
| 19 |
+
"genes_locus" : {
|
| 20 |
+
"type" : "string",
|
| 21 |
+
"description" : "The gene or locus names mentioned in the text."
|
| 22 |
+
},
|
| 23 |
+
"diseases" : {
|
| 24 |
+
"type" : "string",
|
| 25 |
+
"description" : "Diseases / Phenotypes / Traits corresponding to the Gene / Locus / SNP mentioned in the text."
|
| 26 |
+
},
|
| 27 |
+
"SNPs" : {
|
| 28 |
+
"type" : "string",
|
| 29 |
+
"description" : "SNPs (Single Nucleotide Polymorphism) / rsID mentioned in the text. Usually startwith `rs` followed by some numbers."
|
| 30 |
+
},
|
| 31 |
+
"population_race" : {
|
| 32 |
+
"type" : "string",
|
| 33 |
+
"description" : "Population / race used by the author in the given text."
|
| 34 |
+
},
|
| 35 |
+
"sample_size" : {
|
| 36 |
+
"type" : "string",
|
| 37 |
+
"description" : "Sample size of the population used in the research that mentioned in the paper."
|
| 38 |
+
},
|
| 39 |
+
"study_methodology" : {
|
| 40 |
+
"type" : "string",
|
| 41 |
+
"description" : "Study methodoly mentioned in the text."
|
| 42 |
+
},
|
| 43 |
+
"study_level" : {
|
| 44 |
+
"type" : "string",
|
| 45 |
+
"description" : "Study level mentioned in the text."
|
| 46 |
+
}
|
| 47 |
+
},
|
| 48 |
+
"required" : ["title"]
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
tablex_schema = {
|
| 52 |
+
"properties" : {
|
| 53 |
+
"title" : {
|
| 54 |
+
"type" : "string",
|
| 55 |
+
"description" : "Title of the given text. Often located in the top of the first page. Usually at the top of authors name."
|
| 56 |
+
},
|
| 57 |
+
"authors" : {
|
| 58 |
+
"type" : "string",
|
| 59 |
+
"description" : "Authors / writers of the given text. Some of the names of the people."
|
| 60 |
+
},
|
| 61 |
+
"publisher_name" : {
|
| 62 |
+
"type" : "string",
|
| 63 |
+
"description" : "Publisher name of the given text."
|
| 64 |
+
},
|
| 65 |
+
"year_of_publication" : {
|
| 66 |
+
"type" : "string",
|
| 67 |
+
"description" : "The year when the given text publised."
|
| 68 |
+
},
|
| 69 |
+
"population_race" : {
|
| 70 |
+
"type" : "string",
|
| 71 |
+
"description" : "Population / race used by the author in the given text."
|
| 72 |
+
},
|
| 73 |
+
"sample_size" : {
|
| 74 |
+
"type" : "string",
|
| 75 |
+
"description" : "Sample size of the population used in the research that mentioned in the paper."
|
| 76 |
+
},
|
| 77 |
+
"study_methodology" : {
|
| 78 |
+
"type" : "string",
|
| 79 |
+
"description" : "Study methodoly mentioned in the text."
|
| 80 |
+
},
|
| 81 |
+
"study_level" : {
|
| 82 |
+
"type" : "string",
|
| 83 |
+
"description" : "Study level mentioned in the text."
|
| 84 |
+
}
|
| 85 |
+
},
|
| 86 |
+
"required" : ["title"]
|
| 87 |
+
}
|
summ.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from langchain.chains.llm import LLMChain
|
| 3 |
+
from langchain.chat_models import ChatOpenAI
|
| 4 |
+
from langchain.prompts import PromptTemplate
|
| 5 |
+
from langchain.document_loaders import PDFPlumberLoader
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
|
| 8 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
| 9 |
+
|
| 10 |
+
os.environ['OPENAI_API_KEY'] = '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'
|
| 11 |
+
|
| 12 |
+
llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo-16k")
|
| 13 |
+
|
| 14 |
+
def get_summ(path):
|
| 15 |
+
|
| 16 |
+
loader = PDFPlumberLoader(path)
|
| 17 |
+
docs = loader.load()
|
| 18 |
+
# Map
|
| 19 |
+
map_template = """The following is a set of documents
|
| 20 |
+
{docs}
|
| 21 |
+
Based on this list of docs, please identify the main themes
|
| 22 |
+
Helpful Answer:"""
|
| 23 |
+
map_prompt = PromptTemplate.from_template(map_template)
|
| 24 |
+
map_chain = LLMChain(llm=llm, prompt=map_prompt)
|
| 25 |
+
|
| 26 |
+
# Reduce
|
| 27 |
+
reduce_template = """The following is set of summaries:
|
| 28 |
+
{doc_summaries}
|
| 29 |
+
Take these and distill it into a final, consolidated summary of the main themes.
|
| 30 |
+
Helpful Answer:"""
|
| 31 |
+
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
| 32 |
+
|
| 33 |
+
# Run chain
|
| 34 |
+
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt)
|
| 35 |
+
|
| 36 |
+
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
| 37 |
+
combine_documents_chain = StuffDocumentsChain(
|
| 38 |
+
llm_chain=reduce_chain, document_variable_name="doc_summaries"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Combines and iteravely reduces the mapped documents
|
| 42 |
+
reduce_documents_chain = ReduceDocumentsChain(
|
| 43 |
+
# This is final chain that is called.
|
| 44 |
+
combine_documents_chain=combine_documents_chain,
|
| 45 |
+
# If documents exceed context for `StuffDocumentsChain`
|
| 46 |
+
collapse_documents_chain=combine_documents_chain,
|
| 47 |
+
# The maximum number of tokens to group documents into.
|
| 48 |
+
token_max=12000,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Combining documents by mapping a chain over them, then combining results
|
| 52 |
+
map_reduce_chain = MapReduceDocumentsChain(
|
| 53 |
+
# Map chain
|
| 54 |
+
llm_chain=map_chain,
|
| 55 |
+
# Reduce chain
|
| 56 |
+
reduce_documents_chain=reduce_documents_chain,
|
| 57 |
+
# The variable name in the llm_chain to put the documents in
|
| 58 |
+
document_variable_name="docs",
|
| 59 |
+
# Return the results of the map steps in the output
|
| 60 |
+
return_intermediate_steps=False,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
|
| 64 |
+
chunk_size=12000, chunk_overlap=0
|
| 65 |
+
)
|
| 66 |
+
split_docs = text_splitter.split_documents(docs)
|
| 67 |
+
|
| 68 |
+
return map_reduce_chain.run(split_docs)
|
utils.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import textwrap
|
| 4 |
+
|
| 5 |
+
import nltk
|
| 6 |
+
import re
|
| 7 |
+
from Bio import Entrez
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def replace_quotes(text):
|
| 11 |
+
pattern = r'(?<=")[^"]*(?=")'
|
| 12 |
+
return re.sub(pattern, lambda match: match.group(0).replace('"', "'"), text)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def clean_text(text):
|
| 16 |
+
"""Remove section titles and figure descriptions from text"""
|
| 17 |
+
pattern = r'[^\w\s]'
|
| 18 |
+
clean = "\n".join([row for row in text.split("\n") if (len(row.split(" "))) > 3 and not (row.startswith("(a)")) and not row.startswith("Figure")])
|
| 19 |
+
return re.sub(pattern, '', clean)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def truncate_text(text, max_tokens):
|
| 23 |
+
wrapper = textwrap.TextWrapper(width=max_tokens)
|
| 24 |
+
truncated_text = wrapper.wrap(text)
|
| 25 |
+
if len(truncated_text) > 0:
|
| 26 |
+
return truncated_text[0]
|
| 27 |
+
else:
|
| 28 |
+
return ""
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def split_text(text, chunk_size):
|
| 32 |
+
chunks = []
|
| 33 |
+
start = 0
|
| 34 |
+
end = chunk_size
|
| 35 |
+
while start < len(text):
|
| 36 |
+
chunks.append(text[start:end])
|
| 37 |
+
start = end
|
| 38 |
+
end += chunk_size
|
| 39 |
+
return chunks
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def extract_gene_name(text):
|
| 43 |
+
|
| 44 |
+
text_str = text.decode("utf-8")
|
| 45 |
+
text_str = text_str.replace("\\n", "").replace("\\t", "").replace("\\'", "'")
|
| 46 |
+
pattern = r"<NAME>(.*?)</NAME>"
|
| 47 |
+
match = re.search(pattern, text_str)
|
| 48 |
+
if match:
|
| 49 |
+
gene_name = match.group(1)
|
| 50 |
+
return gene_name
|
| 51 |
+
else:
|
| 52 |
+
return None
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_geneName(rsid):
|
| 56 |
+
|
| 57 |
+
text = Entrez.efetch(db="snp", id=rsid, retmode='xml').read()
|
| 58 |
+
text = extract_gene_name(text)
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def split_text_into_sentences(text, num_sentences):
|
| 63 |
+
|
| 64 |
+
sentences = nltk.sent_tokenize(text)
|
| 65 |
+
grouped_sentences = [sentences[i:i+num_sentences] for i in range(0, len(sentences), num_sentences)]
|
| 66 |
+
return grouped_sentences
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def flatten_list(nested_list):
|
| 70 |
+
|
| 71 |
+
flattened_list = []
|
| 72 |
+
for item in nested_list:
|
| 73 |
+
if isinstance(item, list):
|
| 74 |
+
flattened_list.extend(flatten_list(item))
|
| 75 |
+
else:
|
| 76 |
+
flattened_list.append(item)
|
| 77 |
+
return flattened_list
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def move_file(source_path, destination_path):
|
| 81 |
+
|
| 82 |
+
if not os.path.exists(destination_path):
|
| 83 |
+
os.makedirs(destination_path)
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
shutil.move(source_path, destination_path)
|
| 87 |
+
print(f"File moved successfully from '{source_path}' to '{destination_path}'.")
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error: {e}")
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def upper_abbreviation(text):
|
| 93 |
+
pattern1 = r'\b(?:[A-Z][a-z.]*\.?\s*)+\b'
|
| 94 |
+
pattern2 = re.compile(r'unknown', re.IGNORECASE)
|
| 95 |
+
def convert_to_upper(match):
|
| 96 |
+
return match.group(0).replace('.', '').upper()
|
| 97 |
+
text = re.sub(pattern2, '', text)
|
| 98 |
+
output_string = re.sub(pattern1, convert_to_upper, text)
|
| 99 |
+
return output_string
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_valid_year(input_text):
|
| 103 |
+
four_letter_words = re.findall(r'\b\w{4}\b', input_text)
|
| 104 |
+
result_text = ' '.join(four_letter_words)
|
| 105 |
+
if len(result_text.split(' ')) > 1:
|
| 106 |
+
return ''.join(result_text.split(' ')[0])
|
| 107 |
+
return result_text
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def sample_size_postproc(text):
|
| 111 |
+
words = text.split()
|
| 112 |
+
pattern = r'\b[A-Za-z]+\d+\b'
|
| 113 |
+
cleaned_words = [word for word in words if not re.match(r'.*\d.*[A-Za-z].*$', word)]
|
| 114 |
+
cleaned_text = ' '.join(cleaned_words)
|
| 115 |
+
cleaned_text = re.sub(pattern, '', cleaned_text)
|
| 116 |
+
return cleaned_text
|