import streamlit as st import cv2 import numpy as np import pydicom import tensorflow as tf import keras from pydicom.dataset import Dataset, FileDataset from pydicom.uid import generate_uid from google.cloud import storage import os import io from PIL import Image import uuid import pandas as pd import tensorflow as tf from datetime import datetime from tensorflow import image from tensorflow.python.keras.models import load_model from keras.applications.densenet import DenseNet121 from keras.layers import Dense, GlobalAveragePooling2D from keras.models import Model from pydicom.pixel_data_handlers.util import apply_voi_lut # Environment Configuration ############################################################### os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "./da-kalbe-63ee33c9cdbb.json" bucket_name = "da-kalbe-ml-result-png" storage_client = storage.Client() bucket_result = storage_client.bucket(bucket_name) bucket_name_load = "da-ml-models" bucket_load = storage_client.bucket(bucket_name_load) # Utility Functions ####################################################################### # Upload Image # st.sidebar.title("Configuration") uploaded_file = st.sidebar.file_uploader("Upload Original Image", type=["png", "jpg", "jpeg", "dcm"]) enhancement_type = st.sidebar.selectbox( "Enhancement Type", ["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"] ) st.sidebar.title("Detection") uploaded_detection = st.sidebar.file_uploader("Upload image to detect", type=["png", "jpg", "jpeg", "dcm"]) if st.sidebar.button('Open Viewer'): redirect_button("https://new-ohif-viewer-k7c3gdlxua-et.a.run.app/") # object detection ######################################################################## H_detection = 224 W_detection = 224 @st.cache_resource def load_model_detection(): model_detection = tf.keras.models.load_model("model-detection.h5", compile=False) model_detection.compile( loss={ "bbox": "mse", "class": "sparse_categorical_crossentropy" }, optimizer=tf.keras.optimizers.Adam(), metrics={ "bbox": ['mse'], "class": ['accuracy'] } ) return model_detection def preprocess_image(image): """ Preprocess the image to the required size and normalization. """ image = cv2.resize(image, (W_detection, H_detection)) image = (image - 127.5) / 127.5 # Normalize to [-1, +1] image = np.expand_dims(image, axis=0).astype(np.float32) return image def predict(model_detection, image): """ Predict bounding box and label for the input image. """ pred_bbox, pred_class = model_detection.predict(image) pred_label_confidence = np.max(pred_class, axis=1)[0] pred_label = np.argmax(pred_class, axis=1)[0] return pred_bbox[0], pred_label, pred_label_confidence def draw_bbox(image, bbox): """ Draw bounding box on the image. """ h, w, _ = image.shape x1, y1, x2, y2 = bbox x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h) image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) return image # Upload to GCS ########################################################################### if 'instance_numbers' not in st.session_state: st.session_state.instance_numbers = {} if 'study_uids' not in st.session_state: st.session_state.study_uids = {} def upload_to_gcs(image_data: io.BytesIO, filename: str, content_type='application/dicom'): #Uploads an image to Google Cloud Storage. try: blob = bucket_result.blob(filename) blob.upload_from_file(image_data, content_type=content_type) st.write("File ready to be seen in OHIF Viewer.") except Exception as e: st.error(f"An unexpected error occurred: {e}") def load_dicom_from_gcs(dicom_name: str = "dicom_00000001_000.dcm"): # Get the blob object blob = bucket_load.blob(dicom_name) # Download the file as a bytes object dicom_bytes = blob.download_as_bytes() # Wrap bytes object into BytesIO (file-like object) dicom_stream = io.BytesIO(dicom_bytes) # Load the DICOM file ds = pydicom.dcmread(dicom_stream) return ds def png_to_dicom(image_path: str, image_name: str, file_name: str, instance_number: int = 1, dicom: str = None, study_instance_uid: str = None, ): # Load the template DICOM file ds = load_dicom_from_gcs() if dicom is None else load_dicom_from_gcs(dicom) # Process the image jpg_image = Image.open(image_path) # the PNG or JPG file to be replaced print("Image Mode:", jpg_image.mode) if jpg_image.mode in ('L', 'RGBA', 'RGB'): if jpg_image.mode == 'RGBA': np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:,:3] else: np_image = np.array(jpg_image.getdata(),dtype=np.uint8) ds.Rows = jpg_image.height ds.Columns = jpg_image.width ds.PhotometricInterpretation = "MONOCHROME1" if jpg_image.mode == 'L' else "RGB" ds.SamplesPerPixel = 1 if jpg_image.mode == 'L' else 3 ds.BitsStored = 8 ds.BitsAllocated = 8 ds.HighBit = 7 ds.PixelRepresentation = 0 ds.PixelData = np_image.tobytes() if not hasattr(ds, 'PatientName') or ds.PatientName == '': ds.PatientName = os.path.splitext(file_name)[0] # Remove extension ds.SeriesDescription = 'original image' if image_name == 'original_image.dcm' else enhancement_type if hasattr(ds, 'StudyDescription'): del ds.StudyDescription if study_instance_uid: ds.StudyInstanceUID = study_instance_uid else: # Check if a StudyInstanceUID exists for the file name if file_name in st.session_state.study_uids: ds.StudyInstanceUID = st.session_state.study_uids[file_name] print(f"Reusing StudyInstanceUID for '{file_name}'") else: # Generate a new StudyInstanceUID and store it new_study_uid = generate_uid() st.session_state.study_uids[file_name] = new_study_uid ds.StudyInstanceUID = new_study_uid print(f"New StudyInstanceUID generated for '{file_name}'") # Generate a new SeriesInstanceUID and SOPInstanceUID for the added image ds.SeriesInstanceUID = generate_uid() ds.SOPInstanceUID = generate_uid() if hasattr(ds, 'InstanceNumber'): st.session_state.instance_numbers[file_name] = int(ds.InstanceNumber) + 1 else: # Manage InstanceNumber based on filename if file_name in st.session_state.instance_numbers: st.session_state.instance_numbers[file_name] += 1 else: st.session_state.instance_numbers[file_name] = 1 ds.InstanceNumber = int(st.session_state.instance_numbers[file_name]) ds.save_as(image_name) else: raise ValueError(f"Unsupported image mode: {jpg_image.mode}") return ds def upload_folder_images(original_image_path, enhanced_image_path, file_name): # Convert images to DICOM if result is png if not original_image_path.lower().endswith('.dcm'): original_dicom = png_to_dicom(original_image_path, "original_image.dcm", file_name=file_name) else: original_dicom = pydicom.dcmread(original_image_path) study_instance_uid = original_dicom.StudyInstanceUID # Use StudyInstanceUID as folder name folder_name = study_instance_uid # Create the folder in Cloud Storage bucket_result.blob(folder_name + '/').upload_from_string('', content_type='application/x-www-form-urlencoded') enhancement_name = enhancement_type.split('_')[-1] enhanced_dicom = png_to_dicom(enhanced_image_path, enhancement_name + ".dcm", study_instance_uid=study_instance_uid, file_name=file_name) # Convert DICOM to byte stream for uploading original_dicom_bytes = io.BytesIO() enhanced_dicom_bytes = io.BytesIO() original_dicom.save_as(original_dicom_bytes) enhanced_dicom.save_as(enhanced_dicom_bytes) original_dicom_bytes.seek(0) enhanced_dicom_bytes.seek(0) # Upload images to GCS upload_to_gcs(original_dicom_bytes, folder_name + '/' + 'original_image.dcm', content_type='application/dicom') upload_to_gcs(enhanced_dicom_bytes, folder_name + '/' + enhancement_name + '.dcm', content_type='application/dicom') # Grad cam ################################################################################ @st.cache_resource def load_gradcam_model(): model = keras.models.load_model('./model_renamed.h5', compile=False) return model def get_mean_std_per_batch(image_path, H=320, W=320): sample_data = [] for idx, img in enumerate(df.sample(100)["Image Index"].values): # path = image_dir + img sample_data.append( np.array(keras.utils.load_img(image_path, target_size=(H, W)))) mean = np.mean(sample_data[0]) std = np.std(sample_data[0]) return mean, std def load_image(img_path, preprocess=True, height=320, width=320): mean, std = get_mean_std_per_batch(img_path, height, width) x = keras.utils.load_img(img_path, target_size=(height, width)) x = keras.utils.img_to_array(x) if preprocess: x -= mean x /= std x = np.expand_dims(x, axis=0) return x def grad_cam(input_model, img_array, cls, layer_name): grad_model = tf.keras.models.Model( [input_model.inputs], [input_model.get_layer(layer_name).output, input_model.output] ) with tf.GradientTape() as tape: conv_outputs, predictions = grad_model(img_array) loss = predictions[:, cls] output = conv_outputs[0] grads = tape.gradient(loss, conv_outputs)[0] gate_f = tf.cast(output > 0, 'float32') gate_r = tf.cast(grads > 0, 'float32') guided_grads = gate_f * gate_r * grads weights = tf.reduce_mean(guided_grads, axis=(0, 1)) cam = np.dot(output, weights) for index, w in enumerate(weights): cam += w * output[:, :, index] cam = cv2.resize(cam.numpy(), (320, 320), cv2.INTER_LINEAR) cam = np.maximum(cam, 0) cam = cam / cam.max() return cam # Compute Grad-CAM def compute_gradcam(model_gradcam, img_path, layer_name='bn'): model_gradcam = load_gradcam_model() preprocessed_input = load_image(img_path) predictions = model_gradcam.predict(preprocessed_input) original_image = load_image(img_path, preprocess=False) # Assuming you have 14 classes as previously mentioned labels = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening', 'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation'] for i in range(len(labels)): st.write(f"Generating gradcam for class {labels[i]}") gradcam = grad_cam(model_gradcam, preprocessed_input, i, layer_name) gradcam = (gradcam * 255).astype(np.uint8) gradcam = cv2.applyColorMap(gradcam, cv2.COLORMAP_JET) gradcam = cv2.addWeighted(gradcam, 0.5, original_image.squeeze().astype(np.uint8), 0.5, 0) st.image(gradcam, caption=f"{labels[i]}: p={predictions[0][i]:.3f}", use_column_width=True) # Image enhancement ####################################################################### def calculate_mse(original_image, enhanced_image): mse = np.mean((original_image - enhanced_image) ** 2) return mse def calculate_psnr(original_image, enhanced_image): mse = calculate_mse(original_image, enhanced_image) if mse == 0: return float('inf') max_pixel_value = 255.0 psnr = 20 * np.log10(max_pixel_value / np.sqrt(mse)) return psnr def calculate_maxerr(original_image, enhanced_image): maxerr = np.max((original_image - enhanced_image) ** 2) return maxerr def calculate_l2rat(original_image, enhanced_image): l2norm_ratio = np.sum(original_image ** 2) / np.sum((original_image - enhanced_image) ** 2) return l2norm_ratio def process_image(original_image, enhancement_type, fix_monochrome=True): if fix_monochrome and original_image.shape[-1] == 3: original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) image = original_image - np.min(original_image) image = image / np.max(original_image) image = (image * 255).astype(np.uint8) enhanced_image = enhance_image(image, enhancement_type) mse = calculate_mse(original_image, enhanced_image) psnr = calculate_psnr(original_image, enhanced_image) maxerr = calculate_maxerr(original_image, enhanced_image) l2rat = calculate_l2rat(original_image, enhanced_image) return enhanced_image, mse, psnr, maxerr, l2rat def apply_clahe(image): clahe = cv2.createCLAHE(clipLimit=40.0, tileGridSize=(8, 8)) return clahe.apply(image) def invert(image): return cv2.bitwise_not(image) def hp_filter(image, kernel=None): if kernel is None: kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) return cv2.filter2D(image, -1, kernel) def unsharp_mask(image, radius=5, amount=2): def usm(image, radius, amount): blurred = cv2.GaussianBlur(image, (0, 0), radius) sharpened = cv2.addWeighted(image, 1.0 + amount, blurred, -amount, 0) return sharpened return usm(image, radius, amount) def hist_eq(image): return cv2.equalizeHist(image) def enhance_image(image, enhancement_type): if enhancement_type == "Invert": return invert(image) elif enhancement_type == "High Pass Filter": return hp_filter(image) elif enhancement_type == "Unsharp Masking": return unsharp_mask(image) elif enhancement_type == "Histogram Equalization": return hist_eq(image) elif enhancement_type == "CLAHE": return apply_clahe(image) else: raise ValueError(f"Unknown enhancement type: {enhancement_type}") # Other Utils ############################################################################# def redirect_button(url): button = st.button('Go to OHIF Viewer') if button: st.markdown(f'', unsafe_allow_html=True) ########################################################################################### ########################### Bounding Box Function ########################################### ########################################################################################### # def predict(model_detection, image): # """ Predict bounding box and label for the input image. """ # pred_bbox, pred_class = model_detection.predict(image) # pred_label_confidence = np.max(pred_class, axis=1)[0] # pred_label = np.argmax(pred_class, axis=1)[0] # return pred_bbox[0], pred_label, pred_label_confidence # def draw_bbox(image, bbox): # """ Draw bounding box on the image. """ # h, w, _ = image.shape # x1, y1, x2, y2 = bbox # x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h) # image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) # return image ########################################################################################### ########################### Streamlit Interface ########################################### ########################################################################################### st.title("AI INTEGRATION FOR CHEST X-RAY") st.header("IMAGE ENHANCEMENT") # File uploader for DICOM files if uploaded_file is not None: if hasattr(uploaded_file, 'name'): file_name = uploaded_file.name file_extension = uploaded_file.name.split(".")[-1] # Get the file extension if file_extension.lower() == "dcm": # Process DICOM file dicom_data = pydicom.dcmread(uploaded_file) pixel_array = dicom_data.pixel_array # Process the pixel_array further if needed # Extract all metadata metadata = {elem.keyword: elem.value for elem in dicom_data if elem.keyword} metadata_dict = {str(key): str(value) for key, value in metadata.items()} df = pd.DataFrame.from_dict(metadata_dict, orient='index', columns=['Value']) # Display metadata in the left-most column with st.expander("Lihat Metadata"): st.write("Metadata:") st.dataframe(df) # Read the pixel data pixel_array = dicom_data.pixel_array img_array = pixel_array.astype(float) img_array = (np.maximum(img_array, 0) / img_array.max()) * 255.0 # Normalize to 0-255 img_array = np.uint8(img_array) # Convert to uint8 img = Image.fromarray(img_array) file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, 1) # st.image(image, caption='Uploaded Image.', use_column_width=True) col1, col2 = st.columns(2) # Check the number of dimensions of the image if img_array.ndim == 3: n_slices = img_array.shape[0] if n_slices > 1: slice_ix = st.sidebar.slider('Slice', 0, n_slices - 1, int(n_slices / 2)) # Display the selected slice st.image(img_array[slice_ix, :, :], caption=f"Slice {slice_ix}", use_column_width=True) else: # If there's only one slice, just display it st.image(img_array[0, :, :], caption="Single Slice Image", use_column_width=True) elif img_array.ndim == 2: # If the image is 2D, just display it with col1: st.image(img_array, caption="Original Image", use_column_width=True) else: st.error("Unsupported image dimensions") original_image = img_array # Example: convert to grayscale if it's a color image if len(pixel_array.shape) > 2: pixel_array = pixel_array[:, :, 0] # Take only the first channel # Perform image enhancement and evaluation on pixel_array enhanced_image, mse, psnr, maxerr, l2rat = process_image(pixel_array, enhancement_type) else: # Process regular image file original_image = np.array(keras.utils.load_img(uploaded_file, color_mode='rgb' if enhancement_type == "Invert" else 'grayscale')) # Perform image enhancement and evaluation on original_image enhanced_image, mse, psnr, maxerr, l2rat = process_image(original_image, enhancement_type) col1, col2 = st.columns(2) with col1: st.image(original_image, caption="Original Image", use_column_width=True) with col2: st.image(enhanced_image, caption='Enhanced Image', use_column_width=True) col1, col2 = st.columns(2) col3, col4 = st.columns(2) col1.metric("MSE", round(mse,3)) col2.metric("PSNR", round(psnr,3)) col3.metric("Maxerr", round(maxerr,3)) col4.metric("L2Rat", round(l2rat,3)) # Save enhanced image to a file enhanced_image_path = "enhanced_image.png" cv2.imwrite(enhanced_image_path, enhanced_image) # Save enhanced image to a file enhanced_image_path = "enhanced_image.png" cv2.imwrite(enhanced_image_path, enhanced_image) # Save original image to a file original_image_path = "original_image.png" cv2.imwrite(original_image_path, original_image) if st.button("Send to OHIF"): upload_folder_images(original_image_path, enhanced_image_path, file_name) # Add the redirect button col1, col2, col3 = st.columns(3) with col1: redirect_button("https://new-ohif-viewer-k7c3gdlxua-et.a.run.app/") with col2: if st.button('Generate Grad-CAM'): model=load_gradcam_model() # Compute and show Grad-CAM st.write("Generating Grad-CAM visualizations") try: compute_gradcam(model_gradcam, uploaded_file) except Exception as e: st.error(f"Error generating Grad-CAM: {e}") st.header("Chest X-ray Disease Detection") st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.") model_detection = load_model_detection() if uploaded_detection is not None: file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, 1) if st.button('Detect'): st.write("Processing...") input_image = preprocess_image(image) pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image) # Updated label mapping based on the dataset label_mapping = { 0: 'Atelectasis', 1: 'Cardiomegaly', 2: 'Effusion', 3: 'Infiltrate', 4: 'Mass', 5: 'Nodule', 6: 'Pneumonia', 7: 'Pneumothorax' } if pred_label_confidence < 0.2: st.write("May not detect a disease.") else: pred_label_name = label_mapping[pred_label] st.write(f"Prediction Label: {pred_label_name}") st.write(f"Prediction Bounding Box: {pred_bbox}") st.write(f"Prediction Confidence: {pred_label_confidence:.2f}") output_image = draw_bbox(image.copy(), pred_bbox) st.image(output_image, caption='Detected Image.', use_column_width=True)