import streamlit as st import cv2 import numpy as np import pydicom import tensorflow as tf import keras from pydicom.dataset import Dataset, FileDataset from pydicom.uid import generate_uid from google.cloud import storage import os import io from PIL import Image import uuid import pandas as pd import tensorflow as tf from datetime import datetime from tensorflow import image from tensorflow.python.keras.models import load_model from keras.applications.densenet import DenseNet121 from keras.layers import Dense, GlobalAveragePooling2D from keras.models import Model from pydicom.pixel_data_handlers.util import apply_voi_lut # Environment Configuration os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = "./da-kalbe-63ee33c9cdbb.json" bucket_name = "da-kalbe-ml-result-png" storage_client = storage.Client() bucket_result = storage_client.bucket(bucket_name) bucket_name_load = "da-ml-models" bucket_load = storage_client.bucket(bucket_name_load) st.sidebar.title("Configuration") uploaded_file = st.sidebar.file_uploader("Upload Original Image", type=["png", "jpg", "jpeg", "dcm"]) enhancement_type = st.sidebar.selectbox( "Enhancement Type", ["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"] ) st.sidebar.title("Detection") uploaded_detection = st.sidebar.file_uploader("Upload image to detect", type=["png", "jpg", "jpeg", "dcm"]) # enhancement_type = st.sidebar.selectbox( # "Enhancement Type", # ["Invert", "High Pass Filter", "Unsharp Masking", "Histogram Equalization", "CLAHE"] # ) H_detection = 224 W_detection = 224 @st.cache_resource def load_model_detection(): model_detection = tf.keras.models.load_model("model-detection.h5", compile=False) model_detection.compile( loss={ "bbox": "mse", "class": "sparse_categorical_crossentropy" }, optimizer=tf.keras.optimizers.Adam(), metrics={ "bbox": ['mse'], "class": ['accuracy'] } ) return model_detection def preprocess_image(image): """ Preprocess the image to the required size and normalization. """ image = cv2.resize(image, (W_detection, H_detection)) image = (image - 127.5) / 127.5 # Normalize to [-1, +1] image = np.expand_dims(image, axis=0).astype(np.float32) return image def predict(model_detection, image): """ Predict bounding box and label for the input image. """ pred_bbox, pred_class = model_detection.predict(image) pred_label_confidence = np.max(pred_class, axis=1)[0] pred_label = np.argmax(pred_class, axis=1)[0] return pred_bbox[0], pred_label, pred_label_confidence def draw_bbox(image, bbox): """ Draw bounding box on the image. """ h, w, _ = image.shape x1, y1, x2, y2 = bbox x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h) image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) return image st.title("AI INTEGRATION FOR CHEST X-RAY") st.header("Chest X-ray Disease Detection") st.write("Upload a chest X-ray image and click on 'Detect' to find out if there's any disease.") model_detection = load_model_detection() # uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "dcm"]) if uploaded_detection is not None: file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, 1) # st.image(image, caption='Uploaded Image.', use_column_width=True) if st.button('Detect'): st.write("Processing...") input_image = preprocess_image(image) pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image) # Updated label mapping based on the dataset label_mapping = { 0: 'Atelectasis', 1: 'Cardiomegaly', 2: 'Effusion', 3: 'Infiltrate', 4: 'Mass', 5: 'Nodule', 6: 'Pneumonia', 7: 'Pneumothorax' } if pred_label_confidence < 0.2: st.write("May not detect a disease.") else: pred_label_name = label_mapping[pred_label] st.write(f"Prediction Label: {pred_label_name}") st.write(f"Prediction Bounding Box: {pred_bbox}") st.write(f"Prediction Confidence: {pred_label_confidence:.2f}") output_image = draw_bbox(image.copy(), pred_bbox) st.image(output_image, caption='Detected Image.', use_column_width=True) @st.cache_resource def load_gradcam_model(): model = keras.models.load_model('./model_renamed.h5', compile=False) return model # Utility Functions def upload_to_gcs(image_data: io.BytesIO, filename: str, content_type='application/dicom'): """Uploads an image to Google Cloud Storage.""" try: blob = bucket_result.blob(filename) blob.upload_from_file(image_data, content_type=content_type) st.write("File ready to be seen in OHIF Viewer.") except Exception as e: st.error(f"An unexpected error occurred: {e}") def load_dicom_from_gcs(file_name: str = "dicom_00000001_000.dcm"): # Get the blob object blob = bucket_load.blob(file_name) # Download the file as a bytes object dicom_bytes = blob.download_as_bytes() # Wrap bytes object into BytesIO (file-like object) dicom_stream = io.BytesIO(dicom_bytes) # Load the DICOM file ds = pydicom.dcmread(dicom_stream) return ds def png_to_dicom(image_path: str, image_name: str, dicom: str = None): if dicom is None: ds = load_dicom_from_gcs() else: ds = load_dicom_from_gcs(dicom) jpg_image = Image.open(image_path) # Open the image using the path print("Image Mode:", jpg_image.mode) if jpg_image.mode == 'L': np_image = np.array(jpg_image.getdata(), dtype=np.uint8) ds.Rows = jpg_image.height ds.Columns = jpg_image.width ds.PhotometricInterpretation = "MONOCHROME1" ds.SamplesPerPixel = 1 ds.BitsStored = 8 ds.BitsAllocated = 8 ds.HighBit = 7 ds.PixelRepresentation = 0 ds.PixelData = np_image.tobytes() ds.save_as(image_name) elif jpg_image.mode == 'RGBA': np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:, :3] ds.Rows = jpg_image.height ds.Columns = jpg_image.width ds.PhotometricInterpretation = "RGB" ds.SamplesPerPixel = 3 ds.BitsStored = 8 ds.BitsAllocated = 8 ds.HighBit = 7 ds.PixelRepresentation = 0 ds.PixelData = np_image.tobytes() ds.save_as(image_name) elif jpg_image.mode == 'RGB': np_image = np.array(jpg_image.getdata(), dtype=np.uint8)[:, :3] # Remove alpha if present ds.Rows = jpg_image.height ds.Columns = jpg_image.width ds.PhotometricInterpretation = "RGB" ds.SamplesPerPixel = 3 ds.BitsStored = 8 ds.BitsAllocated = 8 ds.HighBit = 7 ds.PixelRepresentation = 0 ds.PixelData = np_image.tobytes() ds.save_as(image_name) else: raise ValueError("Unsupported image mode:", jpg_image.mode) return ds def save_dicom_to_bytes(dicom): dicom_bytes = io.BytesIO() dicom.save_as(dicom_bytes) dicom_bytes.seek(0) return dicom_bytes def upload_folder_images(original_image_path, enhanced_image_path): # Extract the base name of the uploaded image without the extension folder_name = os.path.splitext(uploaded_file.name)[0] # Create the folder in Cloud Storage bucket_result.blob(folder_name + '/').upload_from_string('', content_type='application/x-www-form-urlencoded') enhancement_name = enhancement_type.split('_')[-1] # Convert images to DICOM original_dicom = png_to_dicom(original_image_path, "original_image.dcm") enhanced_dicom = png_to_dicom(enhanced_image_path, enhancement_name + ".dcm") # Convert DICOM to byte stream for uploading original_dicom_bytes = io.BytesIO() enhanced_dicom_bytes = io.BytesIO() original_dicom.save_as(original_dicom_bytes) enhanced_dicom.save_as(enhanced_dicom_bytes) original_dicom_bytes.seek(0) enhanced_dicom_bytes.seek(0) # Upload images to GCS upload_to_gcs(original_dicom_bytes, folder_name + '/' + 'original_image.dcm', content_type='application/dicom') upload_to_gcs(enhanced_dicom_bytes, folder_name + '/' + enhancement_name + '.dcm', content_type='application/dicom') def get_mean_std_per_batch(image_path, H=320, W=320): sample_data = [] for idx, img in enumerate(df.sample(100)["Image Index"].values): # path = image_dir + img sample_data.append( np.array(keras.utils.load_img(image_path, target_size=(H, W)))) mean = np.mean(sample_data[0]) std = np.std(sample_data[0]) return mean, std def load_image(img_path, preprocess=True, height=320, width=320): mean, std = get_mean_std_per_batch(img_path, height, width) x = keras.utils.load_img(img_path, target_size=(height, width)) x = keras.utils.img_to_array(x) if preprocess: x -= mean x /= std x = np.expand_dims(x, axis=0) return x def grad_cam(input_model, img_array, cls, layer_name): grad_model = tf.keras.models.Model( [input_model.inputs], [input_model.get_layer(layer_name).output, input_model.output] ) with tf.GradientTape() as tape: conv_outputs, predictions = grad_model(img_array) loss = predictions[:, cls] output = conv_outputs[0] grads = tape.gradient(loss, conv_outputs)[0] gate_f = tf.cast(output > 0, 'float32') gate_r = tf.cast(grads > 0, 'float32') guided_grads = gate_f * gate_r * grads weights = tf.reduce_mean(guided_grads, axis=(0, 1)) cam = np.dot(output, weights) for index, w in enumerate(weights): cam += w * output[:, :, index] cam = cv2.resize(cam.numpy(), (320, 320), cv2.INTER_LINEAR) cam = np.maximum(cam, 0) cam = cam / cam.max() return cam # Compute Grad-CAM def compute_gradcam(model_gradcam, img_path, layer_name='bn'): # base_model = keras.applications.DenseNet121(weights = './densenet.hdf5', include_top = False) # x = base_model.output # x = keras.layers.GlobalAveragePooling2D()(x) # predictions = keras.layers.Dense(14, activation = "sigmoid")(x) # model_gradcam = keras.Model(inputs=base_model.input, outputs=predictions) # model_gradcam.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), # loss='sparse_categorical_crossentropy') # model.load_weights('./pretrained_model.h5') # Load the original model # Now use this modified model in your application model_gradcam = load_gradcam_model() preprocessed_input = load_image(img_path) predictions = model_gradcam.predict(preprocessed_input) original_image = load_image(img_path, preprocess=False) # Assuming you have 14 classes as previously mentioned labels = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening', 'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation'] for i in range(len(labels)): st.write(f"Generating gradcam for class {labels[i]}") gradcam = grad_cam(model_gradcam, preprocessed_input, i, layer_name) gradcam = (gradcam * 255).astype(np.uint8) gradcam = cv2.applyColorMap(gradcam, cv2.COLORMAP_JET) gradcam = cv2.addWeighted(gradcam, 0.5, original_image.squeeze().astype(np.uint8), 0.5, 0) st.image(gradcam, caption=f"{labels[i]}: p={predictions[0][i]:.3f}", use_column_width=True) def calculate_mse(original_image, enhanced_image): mse = np.mean((original_image - enhanced_image) ** 2) return mse def calculate_psnr(original_image, enhanced_image): mse = calculate_mse(original_image, enhanced_image) if mse == 0: return float('inf') max_pixel_value = 255.0 psnr = 20 * np.log10(max_pixel_value / np.sqrt(mse)) return psnr def calculate_maxerr(original_image, enhanced_image): maxerr = np.max((original_image - enhanced_image) ** 2) return maxerr def calculate_l2rat(original_image, enhanced_image): l2norm_ratio = np.sum(original_image ** 2) / np.sum((original_image - enhanced_image) ** 2) return l2norm_ratio def process_image(original_image, enhancement_type, fix_monochrome=True): if fix_monochrome and original_image.shape[-1] == 3: original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) image = original_image - np.min(original_image) image = image / np.max(original_image) image = (image * 255).astype(np.uint8) enhanced_image = enhance_image(image, enhancement_type) mse = calculate_mse(original_image, enhanced_image) psnr = calculate_psnr(original_image, enhanced_image) maxerr = calculate_maxerr(original_image, enhanced_image) l2rat = calculate_l2rat(original_image, enhanced_image) return enhanced_image, mse, psnr, maxerr, l2rat def apply_clahe(image): clahe = cv2.createCLAHE(clipLimit=40.0, tileGridSize=(8, 8)) return clahe.apply(image) def invert(image): return cv2.bitwise_not(image) def hp_filter(image, kernel=None): if kernel is None: kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) return cv2.filter2D(image, -1, kernel) def unsharp_mask(image, radius=5, amount=2): def usm(image, radius, amount): blurred = cv2.GaussianBlur(image, (0, 0), radius) sharpened = cv2.addWeighted(image, 1.0 + amount, blurred, -amount, 0) return sharpened return usm(image, radius, amount) def hist_eq(image): return cv2.equalizeHist(image) def enhance_image(image, enhancement_type): if enhancement_type == "Invert": return invert(image) elif enhancement_type == "High Pass Filter": return hp_filter(image) elif enhancement_type == "Unsharp Masking": return unsharp_mask(image) elif enhancement_type == "Histogram Equalization": return hist_eq(image) elif enhancement_type == "CLAHE": return apply_clahe(image) else: raise ValueError(f"Unknown enhancement type: {enhancement_type}") # Function to add a button to redirect to the URL def redirect_button(url): button = st.button('Go to OHIF Viewer') if button: st.markdown(f'', unsafe_allow_html=True) ########################################################################################### ########################### Bounding Box Function ########################################### ########################################################################################### # def predict(model_detection, image): # """ Predict bounding box and label for the input image. """ # pred_bbox, pred_class = model_detection.predict(image) # pred_label_confidence = np.max(pred_class, axis=1)[0] # pred_label = np.argmax(pred_class, axis=1)[0] # return pred_bbox[0], pred_label, pred_label_confidence # def draw_bbox(image, bbox): # """ Draw bounding box on the image. """ # h, w, _ = image.shape # x1, y1, x2, y2 = bbox # x1, y1, x2, y2 = int(x1 * w), int(y1 * h), int(x2 * w), int(y2 * h) # image = cv2.rectangle(image, (x1, y1), (x2, y2), (255, 0, 0), 2) # return image ########################################################################################### ########################### Streamlit Interface ########################################### ########################################################################################### # File uploader for DICOM files if uploaded_file is not None: if hasattr(uploaded_file, 'name'): file_extension = uploaded_file.name.split(".")[-1] # Get the file extension if file_extension.lower() == "dcm": # Process DICOM file dicom_data = pydicom.dcmread(uploaded_file) pixel_array = dicom_data.pixel_array # Process the pixel_array further if needed # Extract all metadata metadata = {elem.keyword: elem.value for elem in dicom_data if elem.keyword} metadata_dict = {str(key): str(value) for key, value in metadata.items()} df = pd.DataFrame.from_dict(metadata_dict, orient='index', columns=['Value']) # Display metadata in the left-most column with st.expander("Lihat Metadata"): st.write("Metadata:") st.dataframe(df) # Read the pixel data pixel_array = dicom_data.pixel_array img_array = pixel_array.astype(float) img_array = (np.maximum(img_array, 0) / img_array.max()) * 255.0 # Normalize to 0-255 img_array = np.uint8(img_array) # Convert to uint8 img = Image.fromarray(img_array) file_bytes = np.asarray(bytearray(uploaded_detection.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, 1) # st.image(image, caption='Uploaded Image.', use_column_width=True) if st.button('Detect'): st.write("Processing...") input_image = preprocess_image(image) pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image) # Updated label mapping based on the dataset label_mapping = { 0: 'Atelectasis', 1: 'Cardiomegaly', 2: 'Effusion', 3: 'Infiltrate', 4: 'Mass', 5: 'Nodule', 6: 'Pneumonia', 7: 'Pneumothorax' } if pred_label_confidence < 0.2: st.write("May not detect a disease.") else: pred_label_name = label_mapping[pred_label] st.write(f"Prediction Label: {pred_label_name}") st.write(f"Prediction Bounding Box: {pred_bbox}") st.write(f"Prediction Confidence: {pred_label_confidence:.2f}") output_image = draw_bbox(image.copy(), pred_bbox) st.image(output_image, caption='Detected Image.', use_column_width=True) col1, col2 = st.columns(2) # Check the number of dimensions of the image if img_array.ndim == 3: n_slices = img_array.shape[0] if n_slices > 1: slice_ix = st.sidebar.slider('Slice', 0, n_slices - 1, int(n_slices / 2)) # Display the selected slice st.image(img_array[slice_ix, :, :], caption=f"Slice {slice_ix}", use_column_width=True) else: # If there's only one slice, just display it st.image(img_array[0, :, :], caption="Single Slice Image", use_column_width=True) elif img_array.ndim == 2: # If the image is 2D, just display it with col1: st.image(img_array, caption="Original Image", use_column_width=True) else: st.error("Unsupported image dimensions") original_image = img_array # Example: convert to grayscale if it's a color image if len(pixel_array.shape) > 2: pixel_array = pixel_array[:, :, 0] # Take only the first channel # Perform image enhancement and evaluation on pixel_array enhanced_image, mse, psnr, maxerr, l2rat = process_image(pixel_array, enhancement_type) else: # Process regular image file original_image = np.array(keras.utils.load_img(uploaded_file, color_mode='rgb' if enhancement_type == "Invert" else 'grayscale')) # Perform image enhancement and evaluation on original_image enhanced_image, mse, psnr, maxerr, l2rat = process_image(original_image, enhancement_type) col1, col2 = st.columns(2) with col1: st.image(original_image, caption="Original Image", use_column_width=True) with col2: st.image(enhanced_image, caption='Enhanced Image', use_column_width=True) col1, col2 = st.columns(2) col3, col4 = st.columns(2) col1.metric("MSE", round(mse,3)) col2.metric("PSNR", round(psnr,3)) col3.metric("Maxerr", round(maxerr,3)) col4.metric("L2Rat", round(l2rat,3)) # Save enhanced image to a file enhanced_image_path = "enhanced_image.png" cv2.imwrite(enhanced_image_path, enhanced_image) # Save enhanced image to a file enhanced_image_path = "enhanced_image.png" cv2.imwrite(enhanced_image_path, enhanced_image) # Save original image to a file original_image_path = "original_image.png" cv2.imwrite(original_image_path, original_image) # Add the redirect button col1, col2, col3 = st.columns(3) with col1: redirect_button("https://new-ohif-viewer-k7c3gdlxua-et.a.run.app/") # with col2: # model_detection = load_model_detection() # file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) # image = cv2.imdecode(file_bytes, 1) # st.image(image, caption='Uploaded Image.', use_column_width=True) # st.button('Detect') # st.write("Processing...") # input_image = preprocess_image(image) # pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image) # # Updated label mapping based on the dataset # label_mapping = { # 0: 'Atelectasis', # 1: 'Cardiomegaly', # 2: 'Effusion', # 3: 'Infiltrate', # 4: 'Mass', # 5: 'Nodule', # 6: 'Pneumonia', # 7: 'Pneumothorax' # } # if pred_label_confidence < 0.2: # st.write("May not detect a disease.") # else: # pred_label_name = label_mapping[pred_label] # st.write(f"Prediction Label: {pred_label_name}") # st.write(f"Prediction Bounding Box: {pred_bbox}") # st.write(f"Prediction Confidence: {pred_label_confidence:.2f}") # output_image = draw_bbox(image.copy(), pred_bbox) # st.image(output_image, caption='Detected Image.', use_column_width=True) # file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) # image = cv2.imdecode(file_bytes, 1) # st.button('Auto Detect') # st.write("Processing...") # input_image = preprocess_image(image) # pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image) # # Updated label mapping based on the dataset # label_mapping = { # 0: 'Atelectasis', # 1: 'Cardiomegaly', # 2: 'Effusion', # 3: 'Infiltrate', # 4: 'Mass', # 5: 'Nodule', # 6: 'Pneumonia', # 7: 'Pneumothorax' # } # if pred_label_confidence < 0.2: # st.write("May not detect a disease.") # else: # pred_label_name = label_mapping[pred_label] # st.write(f"Prediction Label: {pred_label_name}") # st.write(f"Prediction Bounding Box: {pred_bbox}") # st.write(f"Prediction Confidence: {pred_label_confidence:.2f}") # output_image = draw_bbox(image.copy(), pred_bbox) # st.image(output_image, caption='Detected Image.', use_column_width=True) # if st.button('Auto Detect'): # st.write("Processing...") # input_image = image # # input_image = enhancement_type # # input_image = cv2.resize(enhanced_image, (W, H)) # Resize the enhanced image to the required input size # # input_image = (input_image - 127.5) / 127.5 # Normalize to [-1, +1] # # input_image = np.expand_dims(input_image, axis=0).astype(np.float32) # Expand dimensions and convert to float32 # pred_bbox, pred_label, pred_label_confidence = predict(model_detection, input_image) # # Updated label mapping based on the dataset # label_mapping = { # 0: 'Atelectasis', # 1: 'Cardiomegaly', # 2: 'Effusion', # 3: 'Infiltrate', # 4: 'Mass', # 5: 'Nodule', # 6: 'Pneumonia', # 7: 'Pneumothorax' # } # if pred_label_confidence < 0.2: # st.write("May not detect a disease.") # else: # pred_label_name = label_mapping[pred_label] # st.write(f"Prediction Label: {pred_label_name}") # st.write(f"Prediction Bounding Box: {pred_bbox}") # st.write(f"Prediction Confidence: {pred_label_confidence:.2f}") # output_image = draw_bbox(image.copy(), pred_bbox) # st.image(output_image, caption='Detected Image.', use_column_width=True) with col2: if st.button('Generate Grad-CAM'): model=load_gradcam_model() # Compute and show Grad-CAM st.write("Generating Grad-CAM visualizations") try: compute_gradcam(model_gradcam, uploaded_file) except Exception as e: st.error(f"Error generating Grad-CAM: {e}")