import streamlit as st import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 from tensorflow.python.keras.models import load_model from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix class GradCAM(object): def __init__(self, model, alpha=0.8, beta=0.3): self.model = model self.alpha = alpha self.beta = beta def apply_heatmap(self, heatmap, image): heatmap = cv2.resize(heatmap, image.shape[:-1]) heatmap = cv2.applyColorMap(np.uint8(255 * heatmap), cv2.COLORMAP_JET) superimposed_img = cv2.addWeighted(np.array(image).astype(np.float32), self.alpha, np.array(heatmap).astype(np.float32), self.beta, 0) return np.array(superimposed_img).astype(np.uint8) def gradCAM(self, x_test=None, name='block5_conv3', index_class=0): with tf.GradientTape() as tape: last_conv_layer = self.model.get_layer(name) grad_model = tf.keras.Model([self.model.input], [self.model.output, last_conv_layer.output]) model_out, last_conv_layer = grad_model(np.expand_dims(x_test, axis=0)) class_out = model_out[:, index_class] grads = tape.gradient(class_out, last_conv_layer) pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2)) last_conv_layer = last_conv_layer[0] heatmap = last_conv_layer @ pooled_grads[..., tf.newaxis] heatmap = tf.squeeze(heatmap) heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) heatmap = np.array(heatmap) return self.apply_heatmap(heatmap, x_test) # Streamlit app st.title("Grad-CAM Visualization") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: try: # Load the uploaded image file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) img = cv2.imdecode(file_bytes, 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) st.image(img, caption='Uploaded Image.', use_column_width=True) # Preprocess the image for the model (assuming the model expects 224x224 images) img_resized = cv2.resize(img, (224, 224)) img_array = np.expand_dims(img_resized, axis=0) # Load the model model_path = 'model_renamed.h5' # Update this path to your model's path model = tf.keras.models.load_model(model_path) # Initialize GradCAM grad_cam = GradCAM(model) # Compute GradCAM heatmap heatmap_img = grad_cam.gradCAM(img_array[0]) # Display the GradCAM heatmap st.image(heatmap_img, caption='Grad-CAM Heatmap.', use_column_width=True) except Exception as e: st.error(f"Error: {e}")