Spaces:
Runtime error
Runtime error
File size: 1,048 Bytes
d828f96 9cbb57b d828f96 9cbb57b 9e64cc6 9cbb57b d828f96 9cbb57b 9e64cc6 9cbb57b 711f8c2 02398b1 9cbb57b d828f96 9cbb57b 9e64cc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load pre-trained model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("klue/bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("klue/bert-base-uncased")
def chatbot(input_text):
# Tokenize input text
inputs = tokenizer(input_text, return_tensors="pt")
# Get model predictions
outputs = model(**inputs)
logits = outputs.logits.detach().numpy()
predicted_class = logits.argmax(-1)[0]
# Generate response based on predicted class
responses = [
"I'm happy to help you with that!",
"I'm not sure I understand. Can you please rephrase?",
"I'm sorry, I'm not trained to respond to that."
]
response = responses[predicted_class]
return response
# Create Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs="text",
outputs="text",
title="Chatbot",
description="Talk to me!"
)
# Launch Gradio app
iface.launch() |