Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import base64
|
3 |
+
import streamlit as st
|
4 |
+
import tensorflow as tf
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
from keras.optimizers import Adam
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import pickle
|
11 |
+
from sklearn.preprocessing import OneHotEncoder
|
12 |
+
from keras.models import model_from_json
|
13 |
+
|
14 |
+
st.markdown('<h1 style="color:white;">CNN Image classification model</h1>', unsafe_allow_html=True)
|
15 |
+
st.markdown('<h2 style="color:white;">The image classification model classifies images into zebra and horse</h2>', unsafe_allow_html=True)
|
16 |
+
|
17 |
+
st.cache(allow_output_mutation=True)
|
18 |
+
def get_base64_of_bin_file(bin_file):
|
19 |
+
with open(bin_file, 'rb') as f:
|
20 |
+
data = f.read()
|
21 |
+
return base64.b64encode(data).decode()
|
22 |
+
|
23 |
+
def set_png_as_page_bg(png_file):
|
24 |
+
bin_str = get_base64_of_bin_file(png_file)
|
25 |
+
page_bg_img = '''
|
26 |
+
<style>
|
27 |
+
.stApp {
|
28 |
+
background-image: url("data:image/png;base64,%s");
|
29 |
+
background-size: cover;
|
30 |
+
background-repeat: no-repeat;
|
31 |
+
background-attachment: scroll; # doesn't work
|
32 |
+
}
|
33 |
+
</style>
|
34 |
+
''' % bin_str
|
35 |
+
|
36 |
+
st.markdown(page_bg_img, unsafe_allow_html=True)
|
37 |
+
return
|
38 |
+
|
39 |
+
set_png_as_page_bg('background.webp')
|
40 |
+
|
41 |
+
|
42 |
+
# def load_model():
|
43 |
+
# # load json and create model
|
44 |
+
# json_file = open('model.json', 'r')
|
45 |
+
# loaded_model_json = json_file.read()
|
46 |
+
# json_file.close()
|
47 |
+
# CNN_class_index = model_from_json(loaded_model_json)
|
48 |
+
# # load weights into new model
|
49 |
+
# model = CNN_class_index.load_weights("model.h5")
|
50 |
+
|
51 |
+
# #model= tf.keras.load_model('model.h5')
|
52 |
+
# #CNN_class_index = json.load(open(f"{os.getcwd()}F:\Machine Learning Resources\ZebraHorse\model.json"))
|
53 |
+
# return model, CNN_class_index
|
54 |
+
def load_model():
|
55 |
+
# Load the model architecture
|
56 |
+
with open('model.json', 'r') as f:
|
57 |
+
model = model_from_json(f.read())
|
58 |
+
|
59 |
+
# Load the model weights
|
60 |
+
model.load_weights('model.h5')
|
61 |
+
#CNN_class_index = json.load(open(f"{os.getcwd()}F:\Machine Learning Resources\ZebraHorse\model.json"))
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
def image_transformation(image):
|
66 |
+
#image = Image._resize_dispatcher(image, (256, 256))
|
67 |
+
# image= np.resize((256,256))
|
68 |
+
image = np.array(image)
|
69 |
+
# np.save('images.npy', image)
|
70 |
+
# image = np.load('images.npy', allow_pickle=True)
|
71 |
+
|
72 |
+
return image
|
73 |
+
|
74 |
+
|
75 |
+
def image_prediction(image, model):
|
76 |
+
image = image_transformation(image=image)
|
77 |
+
outputs = model.predict(image)
|
78 |
+
_, y_hat = outputs.max(1)
|
79 |
+
predicted_idx = str(y_hat.item())
|
80 |
+
return predicted_idx
|
81 |
+
|
82 |
+
def main():
|
83 |
+
|
84 |
+
image_file = st.file_uploader("Upload an image", type=['jpg', 'jpeg', 'png'])
|
85 |
+
|
86 |
+
if image_file:
|
87 |
+
|
88 |
+
left_column, right_column = st.columns(2)
|
89 |
+
left_column.image(image_file, caption="Uploaded image", use_column_width=True)
|
90 |
+
image = Image.open(image_file)
|
91 |
+
image = image_transformation(image=image)
|
92 |
+
|
93 |
+
|
94 |
+
pred_button = st.button("Predict")
|
95 |
+
|
96 |
+
model = load_model()
|
97 |
+
# label = ['Zebra', 'Horse']
|
98 |
+
# label = np.array(label).reshape(1, -1)
|
99 |
+
# ohe= OneHotEncoder()
|
100 |
+
# labels = ohe.fit_transform(label).toarray()
|
101 |
+
|
102 |
+
if pred_button:
|
103 |
+
image_prediction(image, model)
|
104 |
+
outputs = model.predict(image)
|
105 |
+
_, y_hat = outputs.max(1)
|
106 |
+
predicted_idx = str(y_hat.item())
|
107 |
+
right_column.title("Prediction")
|
108 |
+
right_column.write(predicted_idx)
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == '__main__':
|
112 |
+
main()
|