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Abstract

Natural Language Processing (NLP) and Voice Recognition agents are rapidly
evolving healthcare by enabling efficient, accessible, and professional patient sup-
port while automating grunt work. This report serves as my self project wherein
models finetuned on medical call recordings are analysed through a two-stage
system: Automatic Speech Recognition (ASR) for speech transcription and a Large
Language Model (LLM) for context-aware, professional responses. ASR, fine-
tuned on phone call recordings provides generalised transcription of diverse patient
speech over call, while the LLM matches transcribed text to medical diagnosis. A
novel audio preprocessing strategy, is deployed to provide invariance to incom-
ing recording/call data, laden with sufficient augmentation with noise/clipping
to make the pipeline robust to the type of microphone and ambient conditions
the patient might have while calling/recording. Find the deployed pipeline here:
https://huggingface.co/spaces/Kabir259/medspeechrec

1 Introduction

In the critical field of healthcare, accurate medical transcription is far more than an administrative
task—it is fundamental to effective patient care and informed treatment planning [1, 2]. Automatic
Speech Recognition (ASR) systems, increasingly adopted in clinical environments, are designed to
convert spoken interactions into precise written records [2, 3]. However, these systems face persistent
challenges. Capturing the intricacies of medical conversations, which often include diverse accents,
regional dialects, and specialized medical terminology, remains a significant hurdle [4, 5]. The
complexity is heightened in clinical settings, where accurately interpreting subtle expressions and
technical terms is vital to ensuring clarity and precision in patient records.
Errors in medical ASR systems are diverse and problematic, ranging from misinterpreted drug names
and dosages to incorrect lab values, anatomical confusions, age and gender mismatches, and even
wrong doctor names or dates [6]. Additional issues include the generation of nonsensical words, as
well as omissions and duplications [6, 7]. These inaccuracies can have serious implications, poten-
tially compromising patient diagnoses and treatment decisions [8]. Overcoming these limitations
requires innovative solutions beyond the current capabilities of traditional ASR systems.
Large Language Models (LLMs), trained on massive text datasets, these models exhibit an excep-
tional ability to understand, contextualize, and interpret language with high precision [9, 10]. Recent
research has explored integrating LLMs with audio encoders for direct speech recognition, expand-
ing their potential applications in ASR and opening new possibilities for addressing these critical
challenges [11, 12, 13].
Poor-quality call recordings, often affected by noise, clipping, and compression, significantly degrade
ASR performance, leading to inaccurate transcriptions and reduced reliability [14,15]. Addressing
these challenges requires effective audio signal processing, particularly through filtering and equal-
ization techniques [16].
Low-pass and high-pass filters in digital signal processing (DSP) have proven effective in isolating

Preprint. Under review.

https://huggingface.co/spaces/Kabir259/medspeechrec


Figure 1: Proposed Framework

critical speech frequencies while suppressing unwanted noise [15,17]. Low-pass filtering reduces
high-frequency noise, while high-pass filtering minimizes low-frequency hums [16,17]. Equalization
techniques further enhance audio intelligibility by correcting uneven frequency responses, particularly
common in compressed or distorted call recordings[14].
Research highlights the direct benefits of these techniques for ASR systems, showing improved
transcription accuracy by mitigating noise, clipping, and other distortions [14,15]. By enhancing the
clarity of call recordings, these DSP methods optimize audio for ASR processing, addressing the
unique challenges of noisy and compressed environments [16].

2 Problem Formulation

Given a noisy audio signal S, the denoising process transforms it into a denoised signal S′:

S′ = denoising(S)

The denoised signal S′ is further processed through an equalization step to apply specific filtering
operations, resulting in the cleaned audio signal S′′:

S′′ = equalized(S′)

where the equalization process applies the following filters:

• A high-pass filter centered at 250 Hz,

• A low-pass filter centered at 11,000 Hz,

• A high-shelf filter centered at 4,000 Hz.

Let the cleaned audio signal S0 be:
S0 = S′′

The cleaned audio signal S0 is input to the ASR system, which produces a sequence of transcribed
words {Ti}Ni=1, where each Ti represents a word in the transcribed sentence:

{Ti}Ni=1 = ASR(S0)

The transcribed sentence T , composed of {Ti}Ni=1, is then passed to a language model (LLM) for
classification, resulting in a label L:

L = LLM(T )
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Objective

The objective is to optimize the process such that the label L accurately reflects the intended
classification, minimizing the error introduced by noise in S and ensuring robust performance of the
ASR and LLM systems. Latency should be minimal.

3 Methodology

3.1 Audio PreProcessing

3.1.1 Noise

In acoustic terms, noise is typically associated with high-frequency disturbances and stereo imbal-
ances. However, call recordings are inherently converted to mono signals during transmission, as
telecommunication systems prioritize bandwidth efficiency and interpretability. This conversion
reduces stereo artifacts but retains high-frequency disturbances, which may interfere with Automatic
Speech Recognition (ASR) systems. Additionally, mono signals make noise components easier to
process but leave the signal susceptible to other forms of distortion.

3.1.2 Clipping

Low-frequency noise, or "rumble," is a significant contributor to distortion in audio signals. As rumble
is inherently mono, low frequencies cannot exhibit stereo characteristics due to phase cancellation
issues; any stereo representation of such frequencies would result in destructive interference. When
rumble occupies a large portion of the signal, especially in recordings made with cheap consumer
grade microphones(as the ones present in our phones), some even featuring bass-boost technology, it
can overwhelm the system’s dynamics. This often leads to distortion, where the rumble’s waveforms
flatten or "clip" into square-like shapes upon hitting the volume ceiling or limiter. Expensive
microphones are designed to be more sensitive to high frequencies while managing low-frequency
handling, but cheap alternatives exacerbate this problem, leading to degraded audio quality.

3.1.3 Can Equalization Remove Both Noise and Clipping?

Equalization offers an effective solution for addressing static noise and clipping in call recordings. A
high-pass filter can block low-frequency rumble, significantly reducing its interference with the signal.
Similarly, a low-pass filter can eliminate static high-frequency noise, such as hiss or transmission
artifacts, which are common in compressed call recordings. Music producers often use an additional
high-shelf filter to enhance vocal clarity, boosting high frequencies by a few decibels to introduce
"shimmer" and improve perceived audio quality. This technique is adapted here to clean spoken audio
for further use in the ASR model.

3.1.4 On AI Denoising Models

While equalization can address static noise—largely caused by poor equipment or transmission—
dynamic noise presents a more complex challenge. Dynamic noise, such as crowd chatter or ambient
environmental sounds, shifts across the frequency spectrum, making it harder to isolate with simple
filtering techniques. In these cases, AI-driven denoising models are much better. These models
can adapt to varying noise profiles, identifying and suppressing unwanted components in real-time
without compromising the primary signal. This capability makes AI denoising better compared to
traditional equalization. However in our case, it is assumed that noise remains static (only due to
recording and transmission artifacts). Use of AI models, however add latency to the pipeline which
makes it slow.

3.2 ASR

Whisper, trained on a large, supervised multilingual and multitask dataset, delivers robust out-of-the-
box transcription, excelling in noisy and diverse environments, such as medical dictations. In contrast,
wav2vec 2.0 uses self-supervised learning to extract speech representations from unlabeled data,
requiring fine-tuning to adapt to domain-specific tasks like medical terminology. Whisper provides
immediate usability without additional training. With minimal finetuning (albeit longer training
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times), Whisper outperforms (check results) wav2vec 2.0 as it is has a transformer based architecture,
which is magnitudes better than a CNN based archtiecture like that of wav2vec 2.0.

3.3 LLM

Qwen2 and Llama3 are both famous open source LLMs, however I choose to use Qwen2 due to:

Feature Qwen2 Llama3
Speed 7-24% faster than Llama3 Slower, particularly in complex tasks

Tokens per Second 11-16 tokens/second ~3x slower than Qwen 2
Context Length Up to 128K tokens Shorter context length

Multilingual Support Strong, responds with the query language Limited, often defaults to English
Table 1: Comparison between Qwen2 and LLama3

Other parameters like pricing etc. are similar for both models. The main differentiating factor for
choosing Qwen2 is its better speed and its performance in NLP tasks as compared to LLama3.

4 Experiments

4.1 Dataset

The Medical Speech, Transcription, and Intent Dataset is used as mentioned.

Total Samples Train Test Validation
6661 381 5895 385

There are multiple fields for each sample detailing the Quietness, Clipping and Noise in the corre-
sponding audio snippet of the entry. We crop this information out as the Audio PreProcessor module
handles that on its own.

4.1.1 ASR

For finetuning the ASR module, irrelevant fields were removed and we were left with a consolidated
representation of the dataset in dictionary format which looked like this:
DatasetDict ({

train: Dataset ({
features: [’text’, ’audio ’],
num_rows: 381

})
test: Dataset ({

features: [’text’, ’audio ’],
num_rows: 5895

})
validate: Dataset ({

features: [’text’, ’audio ’],
num_rows: 385

})
})

where the text field corresponds to the phrase field in the original csv file and the audio field is
extracted from the subdirectory given.

4.1.2 LLM

Similarly, for finetuning the LLM module,the dataset in dictionary format which looked like this:
DatasetDict ({

train: Dataset ({
features: [’sentence ’, ’label ’],
num_rows: 381
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})
test: Dataset ({

features: [’sentence ’, ’label ’],
num_rows: 5895

})
validate: Dataset ({

features: [’sentence ’, ’label ’],
num_rows: 385

})
})

where the sentence field corresponds to the phrase field and the label field corresponds to the prompt
field in the original csv file.
This was then transformed to the Alpaca format which is required for Qwen2/LLama3 to be trained
on. It looks like:

Dataset ({
features: [’instruction ’, ’input ’, ’output ’, ’text ’],
num_rows: 999

})

and every sample looks like:

alpaca_prompt = """ Given a sentence generated via a Speech to Text model ,
clean the sentence grammatically and make it sound natural. Then classify
the speaker ’s medical conditon in the given sentence.

### Instruction:
{}

### Input:
{}

### Response:
{}
<|endoftext |>"""

4.2 Parameter Tuning and Libraries

4.2.1 ASR

For ASR, a learning rate of 5e-5 , weight decay of 0.005, and constant, linear and cosine learning rate
schedule were experimented with. The models usually got finetuned in 1500-2000 steps. Warmup
steps, set to 200 (approximately 10% of the 1,000 total training steps).
Training was conducted using mixed-precision (fp16) to address limited computational resources.
Mixed-precision training significantly reduces memory consumption and computational load, enabling
faster processing and larger batch sizes. Most operations in fp16 are sufficient for convergence while
critical steps are retained in fp32.
The word error rate (WER) was selected from the jiwer library as the primary evaluation metric
due to its direct relevance to ASR tasks. Unlike general-purpose metrics such as accuracy or F1
score, WER evaluates transcription quality by measuring the total number of insertions, deletions,
and substitutions required to match predicted transcriptions with ground truth, keeping in mind minor
transcription inaccuracies can significantly impact usability.

4.2.2 LLM

For the LLM, I used the unsloth library to significantly speed up the training process. I ran it for
20 epochs with 5 warmup steps with a linear learning rate sceduler and used LoRA PEFT method.
Since I had more leeway with compute here (due to the training library I used), I opted for bf16
training instead of fp16 training (I didn’t increase the epochs/steps or learning rate as the model
started oscillating in loss later on). bf16 is better than fp16 as it has a wider dynamic range due to
its 8-bit exponent (compared to fp16’s 5-bit), allowing it to handle larger and smaller values more
effectively without overflow or underflow.
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4.3 Results

4.3.1 ASR

Model Version WER(%) Steps Taken To TrainValidation End of Training

wav2vec2

base 135 - -
base-FT 48.9 32.8 2500 (2.5 hrs)
BERT 100 - -

BERT-FT 37.5 23.1 500 (1 hr)

Whisper small(3B) 128 - -
small(3B)-FT 21.3 9.97 1000 (2.5 hrs)

Table 2: Results for ASR(Whisper and wav2vec 2.0)

The Whisper model is extremely compute intensive(even the small 3B version) however, gives the
best results as shown. A performance of 21.3% WER with minimal fitnetuning in Whisper indicated
that with dedicated finetuning with more data and compute, it can quickly scale up to be an industry
ready model with high reliability. Whisper, can quickly learn new accents and dialects and can learn
to differentiate speech in noisy input, making its finetuning all the more worthwhile. This goes to
shows how Whisper is the best ASR model for our use case, owing to its huge training library and
transformer architecture.
It is interesting to note that without finetuning, no model, either ASR or LLM is able to
perform on the dataset. wav2vec2-BERT shows a significant improvement over wav2vec2-
base both in terms of WER and time taken to finetune, however, can’t match Whisper.
Finetuning Whisper is effective and excellent in handling domain-specific ASR tasks such as
Medical Speech Recognition, given enough compute, time and data.

4.3.2 LLM

Model Version Accuracy(%) Steps Taken To TrainValidation End of Training

Qwen2 7B - - -
7B-FT(LoRA) 20.0 25.5 20 (30 mins)

Table 3: Results for LLM(Qwen2)

The LLM model needs to get fine-tuned in order to generate one-word label classifications. Otherwise
it will just start responding like a general LLM.

The training was extremely fast due to LoRA. The reason I opted for such low steps was due to the
oscillating loss of the model when I ran it for 200 steps earlier. The low validation accuracy shouldn’t
be considered ’that’ dreadful as many sentences wrongly classified logically seem to fit those labels
to some extent too! (the issue lies with lack of data, as LLMs are data hungry models).

Predicted Ground Truth

stomach ache emotional pain
hard to breath feeling dizzy

knee pain injury from sports
stomach ache feeling dizzy

Table 4: Excerpt of the inference results for the LLM classifier

Check ./Benchmarking/QWEN2_inf+val.ipynb for inference and validation results.
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5 Conclusion

This report demonstrates the integration of ASR systems, such as Whisper and wav2vec 2.0, with
LLMs like Qwen2 for medical speech recognition and diagnostics. Whisper’s transformer-based
architecture and extensive training dataset enable it to address challenges posed by noisy environments
and the linguistic complexities of medical contexts effectively.
It is found that Qwen2 is suitable for contextualizing transcribed speech in classification tasks,
supported by its processing speed, extended context length, and multilingual capabilities. While
currently applied to label classification, the scalability of such LLMs suggests potential for further
development into conversational agents or chatbots capable of assisting in medical consultations and
streamlining healthcare workflows.
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