medspeechrec / app.py
Kabir259's picture
Update app.py
45957cb verified
import gradio as gr
import torch
from transformers import (
AutoModelForCTC,
Wav2Vec2Processor,
AutoProcessor,
WhisperProcessor,
WhisperForConditionalGeneration
)
import librosa
from gradio_pdf import PDF
import os # For working with file paths
# Initialize device - will work on CPU if GPU not available
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
class ModelManager:
def __init__(self):
self.asr_models = {}
def load_wav2vec2_base(self):
model = AutoModelForCTC.from_pretrained("kabir259/w2v2-base_kabir").to(DEVICE)
processor = Wav2Vec2Processor.from_pretrained("kabir259/w2v2-base_kabir")
return model, processor
def load_wav2vec2_bert(self):
model = AutoModelForCTC.from_pretrained("Kabir259/w2v2-BERT_kabir").to(DEVICE)
processor = AutoProcessor.from_pretrained("Kabir259/w2v2-BERT_kabir")
return model, processor
def load_whisper_small(self):
model = WhisperForConditionalGeneration.from_pretrained("Kabir259/whisper-small_kabir").to(DEVICE)
processor = WhisperProcessor.from_pretrained("Kabir259/whisper-small_kabir")
model.generation_config.task = "transcribe"
return model, processor
def get_asr_model(self, model_name):
if model_name not in self.asr_models:
if model_name == "wav2vec2-base":
self.asr_models[model_name] = self.load_wav2vec2_base()
elif model_name == "wav2vec2-BERT":
self.asr_models[model_name] = self.load_wav2vec2_bert()
elif model_name == "whisper-small":
self.asr_models[model_name] = self.load_whisper_small()
return self.asr_models[model_name]
def process_audio(audio_path, asr_model_name, model_manager):
model, processor = model_manager.get_asr_model(asr_model_name)
# Load and preprocess audio
audio, sr = librosa.load(audio_path, sr=16000) # Load audio with a fixed sampling rate
if asr_model_name == "wav2vec2-base":
# Process audio for wav2vec2 models
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_values.to(DEVICE)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
elif asr_model_name == "wav2vec2-BERT":
input_values = processor(audio, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
else: # whisper model
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features.to(DEVICE)
with torch.no_grad():
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription
def process_pipeline(audio, asr_model_choice, model_manager):
if audio is None:
return "Please record some audio first."
transcription = process_audio(audio, asr_model_choice, model_manager)
return transcription
# Initialize the model manager
model_manager = ModelManager()
# Path to your PDF (relative path to `main.pdf`)
path_to_pdf = os.path.join(os.path.dirname(__file__), "main.pdf")
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Medical Speech Recognition System 🥼")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Record Audio",
type="filepath"
)
asr_model_choice = gr.Dropdown(
choices=["wav2vec2-base", "wav2vec2-BERT", "whisper-small"],
value="wav2vec2-base",
label="Select ASR Model"
)
submit_btn = gr.Button("Transcribe")
with gr.Column():
transcription_output = gr.Textbox(
label="Transcribed Text",
placeholder="Transcription will appear here..."
)
with gr.Row():
gr.Markdown("## Benchmarking Wav2Vec 2.0, Whisper & Qwen2 for my Medical ASR + LLM pipeline! <br>[PDF](https://github.com/Kabir259/BenchASR-LLM4Med/blob/main/main.pdf), [GitHub](https://github.com/Kabir259/BenchASR-LLM4Med)")
pdf_display = PDF(path_to_pdf) # Display the pre-loaded PDF
submit_btn.click(
fn=lambda audio, asr_choice: process_pipeline(audio, asr_choice, model_manager),
inputs=[audio_input, asr_model_choice],
outputs=transcription_output
)
if __name__ == "__main__":
demo.launch(share=True)