import streamlit as st from PIL import Image from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests import io # Load the OCR model and processor model_name = "microsoft/trocr-base-stage1" processor = TrOCRProcessor.from_pretrained(model_name) model = VisionEncoderDecoderModel.from_pretrained(model_name) # Streamlit app title st.title("OCR with TrOCR") # Upload image section uploaded_image = st.file_uploader("Upload an image for OCR", type=["jpg", "jpeg", "png"]) if uploaded_image is not None: # Open and display the uploaded image image = Image.open(uploaded_image) st.image(image, caption="Uploaded Image", use_column_width=True) # Convert image to suitable format inputs = processor(images=image, return_tensors="pt") # Perform OCR with torch.no_grad(): outputs = model.generate(**inputs) # Decode the generated text text = processor.decode(outputs[0], skip_special_tokens=True) # Display the OCR result st.write("Extracted Text:") st.text(text)