Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Dockerfile +30 -0
- app.py +126 -0
- requirements.txt +8 -0
Dockerfile
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /code
|
5 |
+
|
6 |
+
# Copy requirements file and install dependencies
|
7 |
+
COPY ./requirements.txt /code/requirements.txt
|
8 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
9 |
+
|
10 |
+
# Create a non-root user
|
11 |
+
RUN useradd user
|
12 |
+
|
13 |
+
# Set environment variables
|
14 |
+
ENV HOME=/home/user \
|
15 |
+
PATH=/home/user/.local/bin:$PATH
|
16 |
+
|
17 |
+
# Switch to the non-root user
|
18 |
+
USER user
|
19 |
+
|
20 |
+
# Set working directory for the application
|
21 |
+
WORKDIR $HOME/app
|
22 |
+
|
23 |
+
# Copy application code into the container
|
24 |
+
COPY --chown=user . $HOME/app
|
25 |
+
|
26 |
+
# Expose port
|
27 |
+
EXPOSE 7860
|
28 |
+
|
29 |
+
# Command to run the FastAPI application using uvicorn
|
30 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from transformers import GenerationConfig
|
5 |
+
from time import perf_counter
|
6 |
+
import json
|
7 |
+
|
8 |
+
from typing import List, Dict
|
9 |
+
import time
|
10 |
+
import datetime
|
11 |
+
import uvicorn
|
12 |
+
import torch
|
13 |
+
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
# device = 'cpu'
|
16 |
+
print("LLM using", device)
|
17 |
+
|
18 |
+
REMOTE_PATH = "KN123/nl2csv4instructions-TinyLlama-v2.0"
|
19 |
+
LOCAL_PATH = "nl2csv4instructions-TinyLlama-v2.0"
|
20 |
+
print("🟢 Fetching the models ....")
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(REMOTE_PATH, device_map = device)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(REMOTE_PATH)
|
23 |
+
print("🚀 Ready! nl2csv4instructions at your service!")
|
24 |
+
|
25 |
+
|
26 |
+
# def get_prompt(tables, question):
|
27 |
+
# prompt = f"""Made. tables: {tables}. question: {question}"""
|
28 |
+
# # print(prompt)
|
29 |
+
# return prompt
|
30 |
+
|
31 |
+
# def prepare_input(question: str, tables: Dict[str, List[str]]):
|
32 |
+
# tables = [f"""{table_name}({",".join(tables[table_name])})""" for table_name in tables]
|
33 |
+
# # print(tables)
|
34 |
+
# tables = ", ".join(tables)
|
35 |
+
# # print(tables)
|
36 |
+
# prompt = get_prompt(tables, question)
|
37 |
+
# # print(prompt)
|
38 |
+
# input_ids = tokenizer(prompt, max_length=512, return_tensors="pt").input_ids
|
39 |
+
# # print(input_ids)
|
40 |
+
# return input_ids
|
41 |
+
|
42 |
+
# def inference(question: str, tables: Dict[str, List[str]]) -> str:
|
43 |
+
# input_data = prepare_input(question=question, tables=tables)
|
44 |
+
# input_data = input_data.to(model.device)
|
45 |
+
# outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=512)
|
46 |
+
# # print("Outputs", outputs)
|
47 |
+
# result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
|
48 |
+
# return result
|
49 |
+
|
50 |
+
def parse(output):
|
51 |
+
# Find the index of '<|assistant|>'
|
52 |
+
end_tag_index = output.find('<|assistant|>')
|
53 |
+
extracted_text = ""
|
54 |
+
if end_tag_index != -1:
|
55 |
+
# Extract text after '<|assistant|>'
|
56 |
+
extracted_text = output[end_tag_index + len('<|assistant|>'):]
|
57 |
+
# Remove any leading '\n' characters
|
58 |
+
extracted_text = extracted_text.lstrip('\n')
|
59 |
+
#print(extracted_text)
|
60 |
+
else:
|
61 |
+
print("End tag '<|assistant|>' not found in output.")
|
62 |
+
|
63 |
+
return extracted_text
|
64 |
+
|
65 |
+
def formatted_prompt(question)-> str:
|
66 |
+
return f"<|user|>\n{question}</s>\n<|assistant|>"
|
67 |
+
|
68 |
+
def generate_response(user_input):
|
69 |
+
|
70 |
+
prompt = formatted_prompt(user_input)
|
71 |
+
|
72 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
73 |
+
generation_config = GenerationConfig(penalty_alpha=0.6,do_sample = True,
|
74 |
+
top_k=5,temperature=0.1,repetition_penalty=1.2,pad_token_id=tokenizer.eos_token_id,max_new_tokens=20,
|
75 |
+
)
|
76 |
+
start_time = perf_counter()
|
77 |
+
|
78 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
79 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device=device)
|
80 |
+
|
81 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
82 |
+
llm_output = (tokenizer.decode(outputs[0], skip_special_tokens=True))
|
83 |
+
# print(llm_output)
|
84 |
+
output_time = perf_counter() - start_time
|
85 |
+
output_time = round(output_time,2)
|
86 |
+
# print(f"Time taken for inference: {output_time} seconds")
|
87 |
+
res = {}
|
88 |
+
res['llm_output'] = llm_output
|
89 |
+
res['time_taken'] = output_time
|
90 |
+
res['parsed_text'] = parse(llm_output)
|
91 |
+
return res
|
92 |
+
|
93 |
+
app = FastAPI()
|
94 |
+
app.add_middleware(
|
95 |
+
CORSMiddleware,
|
96 |
+
allow_origins=["*"], # Allows all origins
|
97 |
+
allow_credentials=True,
|
98 |
+
allow_methods=["GET", "POST", "PUT", "DELETE", "OPTIONS"], # Allows all methods
|
99 |
+
allow_headers=["*"], # Allows all headers
|
100 |
+
)
|
101 |
+
|
102 |
+
@app.get("/")
|
103 |
+
def home():
|
104 |
+
return {
|
105 |
+
"message" : "Hello there! Everything is working fine!",
|
106 |
+
"api-version": "2.0.0",
|
107 |
+
"role": "nl2csv4instructions",
|
108 |
+
"description": "This api can be used to convert natural language into instructions in the form of comma separate values, Ex: pick the items F-1222 and E-2222 or ask to reset all the settings."
|
109 |
+
}
|
110 |
+
|
111 |
+
@app.get("/test-generate")
|
112 |
+
def generate():
|
113 |
+
res = generate_response(user_input='set the color Blue to F-2244')
|
114 |
+
return res
|
115 |
+
|
116 |
+
@app.post("/generate")
|
117 |
+
def generate(request_body:str):
|
118 |
+
print("Request Got: ", request_body)
|
119 |
+
res = generate_response(user_input=request_body)
|
120 |
+
print(res)
|
121 |
+
return res
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
if __name__ == "__main__":
|
126 |
+
uvicorn.run(app, host="127.0.0.1", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
requests
|
3 |
+
uvicorn[standard]
|
4 |
+
sentencepiece
|
5 |
+
torch
|
6 |
+
transformers
|
7 |
+
aiohttp
|
8 |
+
accelerate
|