from gradio_client import Client, file import os token = os.getenv('HF_TOKEN') client = Client("K00B404/HugChatWrap", hf_token=token) def generate(style="dragon themed",x_imgs=3): client.predict( api_name="/_pop_last_user_message" ) client.predict( api_name="/lambda_6" ) client.predict( api_name="/_append_message_to_history_1" ) client.predict( api_name="/lambda_2" ) client.predict( param_2=None, param_3=None, param_4=You are a expert prompt engineer, and specialize in visual description prompts for image generation models., param_5=2048, api_name="/_stream_fn_1" ) client.predict( api_name="/lambda_8" ) img_list=client.predict( x=[f"""make a python list of {x_imgs} visual descriptions as prompts for a image generation model, inspired by [{style}] , make sure the prompts are ramdom , eleborate, and describe mindblowing details. example response: [ 'In a realm of shimmering quartz crystal veins, a mythical phoenix soars amidst the cosmic dance of constellations, its plumage a dazzling display of hues that defy imagination.', 'A breathtaking panorama of a snow-capped mountain range, where ancient glaciers have carved out a landscape of icy wonder, their pristine whiteness beckoning to the keen eye.', 'A kaleidoscope of color, as a living tapestry of bioluminescent algae unfolds across the surface of a deep-sea vortex, their soft glow illuminating the surrounding darkness in a mesmerizing display of nature's grand spectacle.' ] """], api_name="/lambda_3" ) client.predict( api_name="/lambda_4" ) client.predict( saved_conversations=None, api_name="/_save_conversation_1" ) return img_list if __name__ == '__main__': print(generate("dragon themed",3))