Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the InferenceClient with the model name | |
# client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct") | |
def respond( | |
message, | |
history, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Create a list of messages with the system message and user input | |
messages = [{"role": "system", "content": system_message}, {"role": "user", "content": message}] | |
# Calculate the total token count | |
total_token_count = sum(len(m["content"].split()) for m in messages) + max_tokens | |
# Truncate the input message if necessary | |
if total_token_count > 4096: | |
excess_tokens = total_token_count - 4096 | |
for i in range(len(messages) - 1, -1, -1): | |
if len(messages[i]["content"].split()) > excess_tokens: | |
messages[i]["content"] = " ".join(messages[i]["content"].split()[:-excess_tokens]) | |
break | |
else: | |
excess_tokens -= len(messages[i]["content"].split()) | |
messages[i]["content"] = "" | |
# Get the response from the model | |
response = client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=False, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# Return the response | |
return response.choices[0].message.content | |
# Create a ChatInterface with the respond function and additional inputs | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |