JvThunder commited on
Commit
d363723
·
verified ·
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -29
app.py CHANGED
@@ -5,7 +5,6 @@ from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
-
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
@@ -20,51 +19,43 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(devic
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
23
 
24
- def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
-
29
- def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
34
-
35
- def speech_to_speech_translation(audio):
36
- translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
-
42
- title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
50
  demo = gr.Blocks()
51
 
52
- mic_translate = gr.Interface(
53
- fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
- title=title,
57
- description=description,
58
- )
59
-
60
- file_translate = gr.Interface(
61
- fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
- title=title,
66
- description=description,
67
- )
68
 
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
 
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
  # load speech translation checkpoint
 
19
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
20
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
21
 
22
+ languages = ["id"]
23
 
24
+ def translate(audio, target_language):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": target_language})
26
  return outputs["text"]
27
 
28
+ def synthesise(text, target_language):
 
29
  inputs = processor(text=text, return_tensors="pt")
30
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
31
  return speech.cpu()
32
 
33
+ def speech_to_speech_translation(audio, target_language):
34
+ translated_text = translate(audio, target_language)
35
+ synthesised_speech = synthesise(translated_text, target_language)
 
36
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
37
  return 16000, synthesised_speech
38
 
39
+ title = "Multilingual Cascaded STST"
 
40
  description = """
41
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in another language. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
42
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
43
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
44
  """
45
 
46
  demo = gr.Blocks()
47
 
48
+ def create_interface(source):
49
+ return gr.Interface(
50
+ fn=speech_to_speech_translation,
51
+ inputs=[gr.Audio(source=source, type="filepath"), gr.Dropdown(choices=languages, label="Target Language")],
52
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
53
+ title=title,
54
+ description=description,
55
+ )
56
+
57
+ mic_translate = create_interface("microphone")
58
+ file_translate = create_interface("upload")
 
 
 
 
 
59
 
60
  with demo:
61
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])