# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math import os from typing import Any, Dict, List from transformers.trainer import TRAINER_STATE_NAME from .logging import get_logger from .packages import is_matplotlib_available if is_matplotlib_available(): import matplotlib.figure import matplotlib.pyplot as plt logger = get_logger(__name__) def smooth(scalars: List[float]) -> List[float]: r""" EMA implementation according to TensorBoard. """ if len(scalars) == 0: return [] last = scalars[0] smoothed = [] weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function for next_val in scalars: smoothed_val = last * weight + (1 - weight) * next_val smoothed.append(smoothed_val) last = smoothed_val return smoothed def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figure": r""" Plots loss curves in LlamaBoard. """ plt.close("all") plt.switch_backend("agg") fig = plt.figure() ax = fig.add_subplot(111) steps, losses = [], [] for log in trainer_log: if log.get("loss", None): steps.append(log["current_steps"]) losses.append(log["loss"]) ax.plot(steps, losses, color="#1f77b4", alpha=0.4, label="original") ax.plot(steps, smooth(losses), color="#1f77b4", label="smoothed") ax.legend() ax.set_xlabel("step") ax.set_ylabel("loss") return fig def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None: r""" Plots loss curves and saves the image. """ plt.switch_backend("agg") with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f: data = json.load(f) for key in keys: steps, metrics = [], [] for i in range(len(data["log_history"])): if key in data["log_history"][i]: steps.append(data["log_history"][i]["step"]) metrics.append(data["log_history"][i][key]) if len(metrics) == 0: logger.warning(f"No metric {key} to plot.") continue plt.figure() plt.plot(steps, metrics, color="#1f77b4", alpha=0.4, label="original") plt.plot(steps, smooth(metrics), color="#1f77b4", label="smoothed") plt.title("training {} of {}".format(key, save_dictionary)) plt.xlabel("step") plt.ylabel(key) plt.legend() figure_path = os.path.join(save_dictionary, "training_{}.png".format(key.replace("/", "_"))) plt.savefig(figure_path, format="png", dpi=100) print("Figure saved at:", figure_path)